

 Navigation

 	
 index

 	
 next |

 	YAFOWIL - Yet Another Form Widget Library

 [image: _images/yafowil.png]
Visit our YAFOWIL DEMO [http://demo.yafowil.info] SITE!

Callables Everywhere

	YAFOWIL Yet Another Form Widget Library (XHTML)

	YAFOWIL offers HTML form creation and modification at runtime.

	YAFOWIL is all about declarative configuration of form widgets.

	YAFOWIL is lightweight and provides an extensible, reusable set of blueprints.

	YAFOWIL is framework independent.

	YAFOWIL does NOT fight with storage.

Contents

	Introduction
	Motivation

	Dependencies

	Integrations

	Example

	Creating a widget

	Widgets trees

	Rendering Mode

	Data extraction

	Validation

	Persistence

	Providing blueprints

	Adding custom behaviour

	Delivering resources

	Minimal Hello World Example Webapplication

	Elements Explained
	Base principles

	Callables everywhere

	Widget

	Runtime data

	Controller

	Validation

	Factory

	Blueprints

	Describe YAFOWIL forms with YAML
	Create file containing form description

	Computed values

	Define rendering context

	Create Message Factory

	Creating YAFOWIL-Forms form YAML-Files

	Manage translations of YAML forms

	Integrations
	Basics

	WebOb based frameworks

	Zope 2 / Plone based usage

	Werkzeug based frameworks

	Boostrap Styles

	Reference: Blueprints
	ace

	array

	autocomplete

	checkbox

	chosen

	compound

	datetime

	dict

	div

	dynatree

	email

	error

	field

	fieldset

	file

	form

	help

	hidden

	image

	label

	lines

	location

	multiselect

	number

	password

	proxy

	recaptcha

	richtext

	search

	select

	select2

	slider

	submit

	table

	tag

	tbody

	td

	text

	textarea

	th

	thead

	time

	tr

	url

	wysihtml5

 Copyright 2014, Robert Niederreiter, Jens Klein, et al.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	YAFOWIL - Yet Another Form Widget Library

Introduction

YAFOWIL targets rendering form widgets and extracting/validating the data send
by the browser per widget.

YAFOWIL widgets are just configuration. It provides a factory which can
produce widget instances from blueprints.

There is a library of existing blueprints ready to be extended on demand.

YAFOWIL provides blueprints for all HTML standard inputs, lots of helper
blueprints for buidling complex widgets and a bunch of add-ons (usally in
namespace yafowil.widget.*).

Motivation

Tired of inventing widgets again and again when using several Python frameworks
YAFOWIL is intentionally written framework-independent. By just feeding it with
configuration it can be used and extended in most of existing python web
frameworks. Zope, Pyramid, Django, Flask, CherryPy and similar are
candidates.

Another common problem with form libs is a non-unique look and feel of the
available widget collection. YAFOWIL tries to provide some useful addon widgets
which takes care of a unified user experience.

Dependencies

YAFOWIL aims to have no dependencies to any web framework. It utilizes the
node [http://pypi.python.org/pypi/node]
package. YAFOWIL does not know about data-storage, but offers a hook to add
processing callback handler functions and a mechanism for delegating persitence
automatically to a certain degree.

Integrations

YAFOWIL currently integrates with the following packages:

	yafowil.plone [http://pypi.python.org/pypi/yafowil.plone]

	yafowil.webob [http://pypi.python.org/pypi/yafowil.webob]

	yafowil.werkzeug [http://pypi.python.org/pypi/yafowil.werkzeug]

	yafowil.bootstrap [http://pypi.python.org/pypi/yafowil.bootstrap]

For details read the chapter integrations.

Example

For the impatient, code says more than 1000 words: A simple example form works
like so:

import yafowil.loader
from yafowil.base import factory
from yafowil.controller import Controller

Produce a form.:

form = factory(
 'form',
 name='myform',
 props={
 'action': 'http://www.domain.tld/someform',
 })

form['someinput'] = factory(
 'label:text',
 props={
 'label': 'Your Text',
 })

def formaction(widget, data):
 data.printtree()

def formnext(request):
 return 'http://www.domain.tld/result'

form['submit'] = factory(
 'submit',
 props={
 'handler': formaction,
 'next': formnext,
 'action': True,
 })

Render empty form by calling the form object:

rendered = form()

This results in:

<form action="http://www.domain.tld/someform"
 enctype="multipart/form-data"
 id="form-myform"
 method="post">
 <label for="input-myform-someinput">Your Text</label>
 <input id="input-myform-someinput"
 name="myform.someinput"
 type="text"/>
 <input id="input-myform-submit"
 name="action.myform.submit"
 type="submit"
 value="submit" />
</form>

Process form with request. Request is expected as read mapping (dict-like):

request = {
 'myform.someinput': 'Hello World',
 'action.myform.submit': 'submit'
}
controller = Controller(form, request)

The processing result gets written to controller.data:

.. code-block:: python

controller.data

Creating a widget

A widget is an instance of a blueprint created by the factory. Factory is a
singleton and operates also as a registry for blueprints.

By calling the factory a widget is created, here a naked text input field from
the blueprint text:

widget = factory('text')

Blueprints can be chained by colon separated names or given as list:

widget = factory('field:label:text')

This causes the created widget to chain the registered renderers, extractors,
and other parts of the blueprints field, label and text in order.

Blueprint chains can be organised using as macros to reduce the complexity of
factory calls (details below). I.e.:

widget = factory('#field:text')

expands the macro #field to field:label:error and appends :text so
the result is field:label:error:text.

Widgets trees

YAFOWIL forms are organized as widget trees. The entire form is the
root widget which contain compound nodes (containing children again) and/or
leaf nodes. A widget behaves similar to an ordered python dictionary. Compounds
may represent the entire HTML form or fieldsets, while leaf objects may
represent the various HTML input fields.

Thus building widget trees looks like:

form = factory(
 'form',
 name='formname',
 props={
 'action': 'someurl',
 })
form['somefield'] = factory(
 'field:label:text',
 props={
 'label': 'Some Field',
 })
form['somefieldset'] = factory(
 'fieldset',
 props={
 'legend': 'A Fieldset',
 })
form['somefieldset']['innerfield'] = factory(
 'field:label:text',
 props={
 'label': 'Inner Field',
 })
form['submit'] = factory(
 'submit',
 props={
 'handler': formaction,
 'next': formnext,
 'action': True,
 })

Rendering Mode

The way a widget is rendered is controlled by it’s mode. Every widget may given
a mode keyword argument to the factory as a string or a callable accepting
two parameters widget and ``data``returning a string.

These modes are supported:

	edit

	Default classic mode, editing of form is possible. Rendering follows the
registered edit_renderers.

	display

	No form elements are rendered, just the data as defined by registerd
display_renders.

	skip

	Renders just an empty string.

Data extraction

After calling the Controller we have the form processing result on
controller.data which is an instance of yafowil.base.RuntimeData.
Like widgets, runtime data is organized as tree where each runtime data node
refers to a widget node and provides the extracted value and error(s) occurred
while extracting data from request.

request = {
 'formname.somefield': 'Hello World',
 'action.formname.submit': 'submit'
}
controller = Controller(form, request)

data = controller.data

value = data.fetch('myform.someinput').extracted

Validation

In YAFOWIL validation and extraction happens at the same time. Extraction means
to get a meaningful value out of the request. Validation means to check
constraints, i.e if a number is positive or an e-mail-adress is valid. If
validation fails, ExtractionErrors are collected on runtime data describing
what happened.

Datatype extraction

There is a set of common blueprints where you can define the datatype of
the exracted value. Datatype is either some primitive type like int or
float, a class object which can be instanciated with the extracted string
value like uuid.UUID, or a callable expecting the extracted string value
and converting it to whatever.

form['somefield'] = factory('field:label:text', props={
 'label': 'Some Field',
 'datatype': int
})

Blueprints which provide datatype by default are hidden, proxy,
text, lines, select and number.

When providing a datatype to a widget which is not required, we
probably want to have a valid emptyvalue, which takes effect if request
contains an empty string for this widget. The empty value must either be of
or castable to the defined datatype or UNSET.

form['somefield'] = factory('field:label:text', props={
 'label': 'Some Field',
 'datatype': int,
 'emptyvalue': 0
})

Blueprints which provide emptyvalue by default are hidden, proxy,
text, textarea, lines, select, file, password,
email, url, search and number.

Invariants

Invariants are implemented as extractors on compounds. Usally they are put as
a custom blueprint (see below) with one extractor on some parent of the elements
to validate.

Here is a short example (extension of the hello world example) for a custom
invariant extractor which checks if one or the other field is filled, but never
both or none (XOR):

from yafowil.base import ExtractionError
... see helloworld example whats missing here

def myinvariant_extractor(widget, data):
 if data['hello'].extacted == data['world'].extracted:
 error = ExtractionError(
 'provide hello or world, not both or none'
)
 data['hello'].error.append(error)
 data['world'].error.append(error)
 return data.extracted

def application(environ, start_response):
 # ... see helloworld example whats missing here
 form = factory(
 u'*myinvariant:form',
 name='helloworld',
 props={
 'action': url,
 },
 custom={
 'myinvariant': {
 'extractors': [myinvariant_extractor]
 }
 })
 form['hello'] = factory(
 'field:label:error:text',
 props={
 'label': 'Enter some text here',
 })
 form['world'] = factory(
 'field:label:error:text',
 props={
 'label': 'OR Enter some text here',
 })
 # ... see helloworld example whats missing here

Persistence

YAFOWIL provides a delegating mechanism for single data model bound forms.
Processing the extracted form data often requires some additional computing and
targets several persistent obejcts. In this case we simply implement the submit
action callback and do what’s necessary:

class Form(obejct):

 def __init__(self, model):
 self.model = model

 def __call__(self, request):
 controller = Controller(self.form, request)

 def save(self, widget, data):
 # HERE IS THE INTERESTING PART
 self.model.hello = data.fetch('myform.hello').extracted
 self.model.world = data.fetch('myform.world').extracted
 # ...
 transaction.commit()

 form = factory(
 'form',
 name='myform',
 props={
 'action': 'http://www.domain.tld/someform',
 })
 form['hello'] = factory(
 'field:label:error:text',
 props={
 'label': 'Enter hello text here',
 })
 form['world'] = factory(
 'field:label:error:text',
 props={
 'label': 'Enter world text here',
 })
 form['submit'] = factory(
 'submit',
 props={
 'handler': save,
 'action': True,
 })

form = Form(model)
form(request)
... should have form data peristed to model now

While fetching the value from data and assigning it to model look quite
reasonable as long as forms are small, this may get annoying when writing more
and complex forms. If forms refer to a single model, data.write can be used
to delegate transferring extracted data to model.

from yafowil.persistence import attribute_writer

class Form(obejct):

 # ...

 def save(self, widget, data):
 # HERE IS THE INTERESTING PART
 data.write(self.model)
 transaction.commit()

 form = factory(
 'form',
 name='myform',
 props={
 'action': 'http://www.domain.tld/someform',
 'persist_writer': attribute_writer
 })
 # ...

form = Form(model)
form(request)

The most common way is to add the persist_writer property to the entire
form. data.write will walk through the data tree and call
attribute_writer with model, target and value arguments for
each runtime data node with persist attribute True.

The persist property indicates widgets to be considered when
data.write gets called and is given among widget properties at factory
time.

The persist property is True by default on hidden, proxy,
text, textarea, lines, password, checkbox, select,
email, url and number blueprints.

The model received in persisting callback is the model passed to
data.write.

The target received in persisting callback is an arbitrary python object
and defaults to the widget respective runtime data name. The target can
be customized by providing persist_target on widget properties.

The value received in persisting callback is the extracted value from
runtime data.

The writer callback can be customized for each widget via persist_writer
property.

data.write can be called with recurive=False keyword argument.
Persistence only happens on the calling level then.

When setting persist property True on compound widgets, make sure
it’s children get persist set to False explicitly if used child factoy
blueprint is persistent by default.

If data.write gets called on runtime data which contains extration error(s)
a RuntimeError is raised.

The following default writer callbacks exists:

	
	yafowil.persistence.attribute_writer

	Write value to target attribute on model.

	
	yafowil.persistence.write_mapping_writer

	Write value to target write mapping key on model.

	
	yafowil.persistence.node_attribute_writer

	Write value to target node.attrs key on model.

In conjunction with datatype and emptyvalue we have fancy convenience
for peristing form data to single models.

Providing blueprints

General behaviours (rendering, extracting, etc...) can be registered as
blueprint in the factory:

factory.register(
 'myblueprint',
 extractors=[myvalidator],
 edit_renderers=[],
 display_renderers=[],
 preprocessors=[],
 builders=[])

and then used as regular blueprint when calling the factory:

widget = factory('field:label:myblueprint:text', props={
 'label': 'Inner Field',
})

Adding custom behaviour

It’s possible to inject custom behaviour by marking a part of the blueprint
chain with the asterisk * character. Behaviours are one or a combination
of a

	extractor

	extracts, validates and/or converts form-data from the request.

	edit_renderer

	build the markup for editing.

	display_renderer

	build the markup for display only.

	builder

	Generic hook called once at factory time of the widget. Here i.e. subwidgets
can be created.

	preprocessor

	Generic hook to prepare runtime-data. Runs once per runtime-data instance
before extractors or renderers are running.

def myvalidator(widget, data):
 # validate the data, raise ExtractionError if somethings wrong
 if data.extracted != 'something:'
 raise ExtractionError("only 'something' is allowed as input.")
 return data.extracted

widget = factory(
 'field:label:*myvalidation:text',
 props={
 'label': 'Inner Field',
 },
 custom={
 'myvalidation': dict(extractor=[myvalidator]),
 })

Delivering resources

YAFOWIL addon widgets are shipped with related Javascript and Stylesheet
resources. These resources are registered to the factory with additional
information like delivery order and resources group.

To help the integrator delivering these resources through the used web
framework, the helper object yafowil.resources.YafowilResources is supposed
to be used.

The function configure_resource_directory should be overwritten on deriving
class which is responsible to make the given physical resource directory
somehow available to the web.

The object can be instanciated with js_skip and css_skip keyword
arguments, which contain iterable resource group names to skip when calculating
resources. This is useful if basic or dependency resources are already shipped
in another way.

The following example shows how to integrate YAFOWIL resources in a
pyramid [http://www.pylonsproject.org] application.

from pyramid.static import static_view
from yafowil.resources import YafowilResources
import mypackage.views

class Resources(YafowilResources):

 def __init__(self, js_skip=[], css_skip=[], config=None):
 self.config = config
 super(Resources, self).__init__(js_skip=js_skip, css_skip=css_skip)

 def configure_resource_directory(self, plugin_name, resourc_edir):
 # instanciate static view
 resources_view = static_view(resourc_edir, use_subpath=True)
 # attach resources view to package
 view_name = '%s_resources' % plugin_name.replace('.', '_')
 setattr(mypackage.views, view_name, resources_view)
 # register view via config
 view_path = 'mypackage.views.%s' % view_name
 resource_base = '++resource++%s' % plugin_name
 self.config.add_view(view_path, name=resource_base)
 return resource_base

def includeme(config):
 # resources object gets instanciated only once
 resources = Resources(config=config)

 # sorted JS resources URL's. Supposed to be rendered to HTML
 resources.js_resources

 # sorted CSS resources URL's. Supposed to be rendered to HTML
 resources.css_resources

 Copyright 2014, Robert Niederreiter, Jens Klein, et al.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	YAFOWIL - Yet Another Form Widget Library

Minimal Hello World Example Webapplication

This buildout uses WebOb to help creating a minimal WSGI
application.

Create a minimal filesystem structure:

cd /PATH/TO/EXAMPLE
mkdir --parents src/helloworld
touch src/helloworld/__init__.py
wget http://python-distribute.org/bootstrap.py

Add file buildout.cfg containing:

[buildout]
parts = helloworld
develop = .

[helloworld]
recipe = zc.recipe.egg:scripts
egg = helloworld

Add file setup.py:

from setuptools import setup, find_packages
setup(name='helloworld',
 packages=find_packages('src'),
 package_dir = {'': 'src'},
 install_requires=['setuptools', 'yafowil.webob'],
 entry_points = """\
 [console_scripts]
 helloworld = helloworld.run:run
 """
)

Add src/helloworld/run.py including a minimal web application, the YAFOWIL
form and a dumb filesystem based storage:

from yafowil import loader
import yafowil.webob
from yafowil.base import factory
from yafowil.controller import Controller
from webob import Request, Response

address, port = '127.0.0.1', 8080
url = 'http://%s:%s/' % (address, port)

def store(widget, data):
 with open('helloworld.txt', 'a') as storage:
 storage.write(data.fetch('helloworld.hello').extracted + '\n')

def readall():
 try:
 with open('helloworld.txt', 'r') as storage:
 return reversed(storage.readlines())
 except IOError:
 return ['Empty storage!']

def next(request):
 return url

def application(environ, start_response):
 request = Request(environ)
 response = Response()
 response.write('<html><body><h1>YAFOWIL Demo</h1>')
 form = factory(u'form', name='helloworld', props={
 'action': url})
 form['hello'] = factory('field:label:error:text', props={
 'label': 'Enter some text',
 'value': '',
 'required': True})
 form['submit'] = factory('field:submit', props={
 'label': 'store value',
 'action': 'save',
 'handler': store,
 'next': next})
 controller = Controller(form, request)
 response.write(controller.rendered)
 response.write('<hr />%s</html></body>' % '
'.join(readall()))
 return response(environ, start_response)

def run():
 from wsgiref.simple_server import make_server
 server = make_server(address, port, application)
 server.serve_forever()

Now bootstrap and run buildout, and start the application.:

python2.6 bootstrap.py
./bin/buildout
./bin/helloworld

Pointing the browser to http://localhost:8080/ shows the application.

The full working example code [https://github.com/bluedynamics/yafowil-example-helloworld]
is at github available.

 Copyright 2014, Robert Niederreiter, Jens Klein, et al.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	YAFOWIL - Yet Another Form Widget Library

Elements Explained

Base principles

YAFOWIL is based on a set of core ideas:

	Runtime rules, static is subordinate,

	Don’t mess with a framework,

	Keep it simple and pythonic,

	No fights with storage,

	Use chains and trees as structures.

Callables everywhere

If you work with YAFOWIL for the first time it probably feels a bit different
compared to other multiple class inheriting, schema based forms.

Instead YAFOWIL uses simple callables at several places. You never need to
inherit any class from yafowil.* (and if you think you need to you don’t
understand its architecture and should ask us to improve this documentation).

Callables are used for every extensible aspect of YAFOWIL. They are bundled
as blueprints and used via the factory.

Explanation: Callables are simple functions oder instances of a class with a
__call__ method.

Widget

A YAFOWIL form consists of a tree of widgets. Everything you would probably
call a “Field” in other form libraries is a widget instance. Widgets can have
children. Thus, also fieldsets and even the form root itself is a widget.

The behavior of a widget is defined by a series of blueprints and properties
as shown below in the referring sections.

The widget class is generic! It’s never instanciated directly. The factory is
the only place where this happens.

At creation time of widgets you need to use it’s dict-like API for creating
compounds of widgets like a form or a fieldset.

Attention possible confusion:

	Widgets are build from a chain of blueprints in existing
libraries/addons and are configured using properties,

	Blueprints are chains of extractors, renderers, preprocessors and builders
(see below),

	average YAFOWIL user does not need to create blueprints, she just use
them,

	advanced YAFOWIL users planning to develop own widgets will need to write
own blueprints.

Runtime data

While one request to response cycle runs, widgets state is kept in a runtime
data instance. It collects all information like values, request, errors
happened, and the rendered html of a widget in the context of the current
request.

Controller

The controller is responsible for form processing (extraction and validation),
delegation of actions and form rendering (including error handling).

The controller is initialized with a form and request object and immediately
starts the processing. The rendered instance attribute contains the
rendered form, while the attribute data contains the extracted runtime data
tree.

Validation

Unlike most form frameworks YAFOWIL does not make a difference between
extraction of a value from the HTTP-request and validation. Both happens in one
processing step. If an extraction step fails it raises a
yafowil.base.ExtractionError. This special Python Exception carries a human
readable message and the information if this error shall abort the extraction
chain or not. In either case the form has errors.

Factory

Basics

The factory knows of the available blueprints and is respsonsible to construct
and configure widget instances. To construct a widget the factory gets called
with the blueprint name as first parameter:

from yafowil.base import factory
widget = factory('text', ...)

The behavior of the callbacks in the different execution chains of the
blueprint can be configured with the props dict. See blueprints reference
for a full list of accepted properties:

widget = factory('text', props={
 'disabled': 'disabled',
})

For the root widget (most probably the form itself), the name attribute must be
given to the factory:

form = factory('form', name='example_form', props={
 'action': 'http://www.example.com/process_form',
})

Child widget names are set transparent using the child key:

form['field_1'] = factory('text')

Combining blueprints - the factory chain

Usually we have some common widgets, e.g. a pure textarea, and then we need
some label, description, display encountered errors, maybe a table cell or an
encapsulating div and so on. And it can be very different depending on the
framework used or the design we need to implement. But the core functionality
is always the same. In other words: The input field and its behavior is stable,
the eye-candy around it is not.

To solve the different needs, YAFOWIL supports chaining blueprints at factory
time, the so called factory chain.

The blueprint chain is used by passing a colon seperated list of blueprint names
as string to the factory as first argument. I.e. provide a text field inside a
wrapper div with label, help text and error message if extraction failed, call
factory like so:

form['field_1'] = factory('field:label:error:text', props={
 'label': 'Field 1',
 'help': 'Helptext for field 1',
 'required': 'Field 1 must not be empty',
})

This causes the callable chains of each blueprint beeing executed in order.
Extractors are executed from right to left while all others are executed left
to right.

Now we may come up with the problem that several properties refer to more than
one callable inside the execution chains. To address a property specific to a
blueprint of the widget, you can prefix it with the blueprint name.

E.g., ‘label.class’ addresses the ‘class’ property of the ‘label’ blueprint
only instead of effecting all blueprints:

form['field_1'] = factory('field:label:error:text', props={
 'label': 'Field 1',
 'label.class': 'label_css_class'
 'help': 'Helptext for field 1',
 'required': 'Field 1 must not be empty',
})

Macros - predefined factory chains

For the lazy people macros are provided. Macros expand to a factory chain of
blueprints. Expansion happens at chain-lookup time before the widget is built.

Macros must be registered in the factory and can override property defaults:

factory.register_macro('field', 'field:label:error', 'props': {
 'field.class': 'field',
 'field.error_class': 'error',
 'error.class': 'fieldErrorBox',
 'error.render_empty': True,
 'error.position': 'before',
})

Now the field macro can be used inside the factory chain by name prefixed
with #:

textfield = factory('#field:text')

Custom blueprints

For usecases where it’s not worth to write a generic widget for, it’s possible
to inject custom blueprints.

Custom blueprints are passed to the factory either as 5-tuple containing chains
of extractors, edit renderers, preprocessors, builders and display renderers,
or as dictionary containing the chains at keys ‘extractors’, ‘edit_renderers’,
‘preprocessors’, ‘builders’ and ‘display_renderers’. Please read the section
about blueprints below to get a deeper understanding of what happens.

Each chain contains callables as explained above. To tell the factory about
usage of a custom blueprint, use the asterisk-prefix in the factory chain,
like:

``field:label:*mycustom:textarea``

When using custom blueprints, the factory expects the custom
keyword argument, which is a dict with custom blueprint names as keys
(mycustom in our example), and the custom blueprint configuration as
explained above.

Create custom callbacks:

def special_renderer(widget, data):
 return u'<SPECIAL>%s</SPECIAL>' % data.rendered

def special_extractor(widget, data):
 return data.extracted + ['extracted special']

Inject as dict:

widget = factory('outer:*special:inner', custom={
 'special': {
 'extractors': [special_extractor],
 'edit_renderers': [special_renderer],
 },
})

Inject as list:

widget = factory('outer:*special:inner', custom={
 'special': ([special_extractor], [special_renderer], [], [], []),
})

Custom blueprints are great for easily injecting validation extractors.

Blueprints

Blueprints are a construction guides providing different behaviors on a
widget: i.e. rendering a HTML input field, or extracting and validating input
data or converting data received from the request.

This behaviors are organized as chains of callables. The behavior of the
callables itself is controlled by properties. Each chain has different
responsibilities. Chains are executed left-to-right.

Extractor chain

Extractors are responsible to get, convert and validate the data of the
current widget in the context of the current request. An extarctor is a
callable expecting a widget instance and a runtime data instance as parameters.

	Userstory

	An integer field consists of a first extractor getting the value from the
request paramter matching the widget name. This results in a string.
Next extractor in chain is responsible to convert the string to an integer.
If it fails an extraction error is raised. Otherwise the converted value is
returned. If only positive integers are allowed a validating extractor is
added to the chain. If its not positive an ExtractionError is raised,
otherwise the value is returned unmodified.

Edit renderer chain

Edit renderers are responsible to create html form output (unicode-strings)
ready to be passed to the response. It is a callable expecting a widget
instance and a runtime data instance as parameters. At this point the runtime
data instance already passed the extraction chain and contains
information about extracted values and errors. Edit renderers may utilize any
templating language if desired. YAFOWIL has no preferences nor does it support
any specific templating language out of the box. All internal rendering in
YAFOWIL happens in pure python.

The edit renderer chain is executed if mode of widget is ‘edit’.

	Userstory

	An file input field has to be rendered with checkboxes to indicate deletion
of the file. The file input itself is a renderer and the checkboxes are
another renderer. First renderer in chain creates a pure html <input ..>
tag for the file upload. Next renderer creates some checkboxes with labels.
It has access to the string-output of the first renderer as part of
runtime-data. So some <checkbox ..> tags can be prepended, wrapped
around or appended to the previous rendered <input ..>. Both renderers
are reusable and may be used in other contexts, i.e. in an image blueprint
context.

Display renderer chain

Display renderers are responsible to create html view output (unicode-strings)
ready to be passed to the response.

The display renderer chain is executed if mode of widget is ‘display’. Like
edit renderers it is a callable expecting widget and runtime data as parameters
Like the edit renderer it is executed after extraction.

It is possible to mix edit and display renderers in one widget tree, each
widget can have it own mode.

	Userstory

	A form is created for a complex dataset where different groups of users have
different access permissions whether to edit or view a dataset value, or
even to see it at all. The mode property of the widget controlls if the
rendering chain, and which rendering chain gets executed.

Preprocessor chain

The preprocessor chain is executed once per request to response cycle
directly after runtime data was created and before extraction happens.
A preprocessor callable can be used to hook up framework specific requirements
and gets widget and runtime data as parameters. There are global preprocessors
running on every widget and widget specific pre-processors. Later are executed
after the global preprocessors.

	Userstory:

	YAFOWIL expects the request to be a dict like object providing parameters
via get and __getitem__. Further i18n support should be available
i.e. via zope.i18n. A framework integration package now provides one
global preprocessor function wrapping the request if needed, and another
hooking up the i18n message factory and the translate function.

Builder chain

This chain of callables is called only once right after the widget was created
in the factory. A common use-case is to automatically populate a widget with
child widgets. It expects widget and factory as parameters.

	Userstory

	A blueprint is written for a complex widget, and luckily there are lots of
other blueprints already out there providing several behaviors needed.
If complex blueprint should render i.e. a table containing two fields, a
builder callable is registered which builds the table containing the 2
input fields by using the dict like widget API and calling the factory for
creating it’s children.

 Copyright 2014, Robert Niederreiter, Jens Klein, et al.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	YAFOWIL - Yet Another Form Widget Library

Describe YAFOWIL forms with YAML

It is possible to describe YAFOWIL forms using YAML [http://www.yaml.org/] as description language.

JSON [http://www.json.org/JSON] syntax is a subset [https://en.wikipedia.org/wiki/YAML#JSON] of YAML version 1.2, so we support JSON too.

Create file containing form description

Create a file, i.e. demo_form.yaml and add widget configuration.

factory: form
name: demo_form
props:
 action: context.form_action
widgets:
- title:
 factory: "label:field:error:text"
 value: expr:context.get('title', '')
 props:
 label: i18n:title:Title
 required: i18n:title_required:No title given
- description:
 factory: label:field:textarea
 value: expr:context.get('description', '')
 props:
 label: i18n:description:Description
 rows: 5
- save:
 factory: submit
 props:
 action: save
 expression: True
 handler: context.save
 next: context.next
 label: i18n:save:Save

In JSON notation the same would look like this.

{
 "factory": "form",
 "name": "demo_form",
 "props": {
 "action": "context.form_action"
 },
 "widgets": [
 {
 "title": {
 "factory": "label:field:error:text",
 "value": "expr:context.get('title', '')",
 "props": {
 "label": "i18n:title:Title",
 "required": "i18n:title_required:No title given"
 }
 }
 },
 {
 "description": {
 "factory": "label:field:textarea",
 "value": "expr:context.get('description', '')",
 "props": {
 "label": "i18n:description:Description",
 "rows": 5
 }
 }
 },
 {
 "save": {
 "factory": "submit",
 "props": {
 "action": "save",
 "expression": true,
 "handler": "context.save",
 "label": "i18n:save:Save",
 "next": "context.next"
 }
 }
 }
]
}

Each widget node is represented by an associative array.
Keys are mapping to corresponding arguments of yafowil.base.factory signature:

	factory

	Chained factory registration names.

	name

	Widget name. Only required on root, for children widget key is used.

	value

	Widget value or callable/expression returning widget value.

	props

	Widget properties as associative array.
You can prefix individual properties with the name of the blueprint to address a specific blueprint.
For Example use: label.title to set the title attribute of the label.

	custom

	Custom widget properties as associative array.

	mode

	Widget rendering mode or callable/expression returning widget rendering
mode.

	nest

	Include other yaml/json file representing this widget.

	widgets

	Child widgets as list. Each child widget is an associative array with one
key - the widget name - containing again an associative array with the keys
descibed here.

Computed values

Beside static values, definitions may contain python expressions, i18n message
strings, access to a rendering context and pointers to callables.

	i18n:

	If definition value starts with i18n:, a message string gets created
by calling given message factory.

	expr:

	If definition value starts with expr:, a callback wrapper is created
which gets executed each time the widget tree gets rendered. For security
reasons, only rendering context, widget and data are available
in expressions.

	context

	If definition value starts with context, rendering context is used to
lookup callbacks. If lookup fails, return definition value as string.

	. in value

	If . is found in value string, try to lookup callback from module path.
When lookup fails, return definition value as string.

Define rendering context

A rendering context has to be provided. Refering to the form description
example above, this may look like:

>>> class FormRenderingContext(object):
...
... def get(self, key, default=None):
... # do data lookup here
... value = key
... return value
...
... def form_action(self, widget, data):
... # create and return form action URL
... return 'http://example.com/form_action'
...
... def save(self, widget, data):
... # extract and save form data
... pass
...
... def next(self, request):
... # compute and return next URL
... return 'http://example.com/form_action_succeed'

Create Message Factory

Unless no others are registered one want to use message factories from
pyramid.i18n or zope.i18nmessageid. See refering documentation for
details. Here we create a dummy message factory:

>>> message_factory = lambda x: x

Creating YAFOWIL-Forms form YAML-Files

To create a yafowil widget tree from YAML, use yafowil.yaml.parse_from_YAML.
This accepts also JSON file files ending with .json.
To adress a specific pyhton package path prefix the filename with my.module::

>>> import yafowil.loader
>>> from yafowil.yaml import parse_from_YAML

>>> rendering_context = FormRenderingContext()
>>> form = parse_from_YAML('yafowil.yaml:demo_form.yaml',
... context=rendering_context,
... message_factory=message_factory)

This results into...:

>>> form.printtree()
<class 'yafowil.base.Widget'>: demo_form
 <class 'yafowil.base.Widget'>: title
 <class 'yafowil.base.Widget'>: description
 <class 'yafowil.base.Widget'>: save

...which renders:

>>> pxml(form())
<form action="http://example.com/form_action" enctype="multipart/form-data" id="form-demo_form" method="post" novalidate="novalidate">
 <label for="input-demo_form-title">Title</label>
 <div class="field" id="field-demo_form-title">
 <input class="required text" id="input-demo_form-title" name="demo_form.title" required="required" type="text" value="title"/>
 </div>
 <label for="input-demo_form-description">Description</label>
 <div class="field" id="field-demo_form-description">
 <textarea class="textarea" cols="80" id="input-demo_form-description" name="demo_form.description" rows="5">description</textarea>
 </div>
 <input id="input-demo_form-save" name="action.demo_form.save" type="submit" value="Save"/>
</form>

Manage translations of YAML forms

As shown above, YAML forms may contain i18n translation strings. The message
strings and the corresponding default values can be extracted automatically
and written to po files using lingua [http://pypi.python.org/pypi/lingua]
if yafowil.lingua [http://pypi.python.org/pypi/yafowil.lingua] plugin is
installed.

For details on managing translations with lingua please refer to
corresponding documentation.

 Copyright 2014, Robert Niederreiter, Jens Klein, et al.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	YAFOWIL - Yet Another Form Widget Library

Integrations

Basics

By importing yafowil.loader all registrations are done using the
entry-points provided by add-on widgets and integration packages.

CSS and Javascript resources needed by the add-on widgets are available through
entry_point registration. For convinience yafowil.utils offers functions
to access the relevant information.

Framework integration is about plugging in methods for request uniformation and
i18n bindings to yafowil. Its usally done by registering a global preprocessor
to the factory.

Setting a dependency to the integration package in code, i.e. in the custom eggs
setup.py or in buildout.cfg - whatever is choosed -, is needed.

WebOb based frameworks

The package yafowil.webob provides binding to WebOb based frameworks,
such as Pyramid, Google Appengine and others.

Zope 2 / Plone based usage

Package yafowil.plone handles integration for Zope 2 and Plone.

In portal_setup or in site-setup add-ons install YAFOWIL.

The example
YAFOWIL tutorial at plone.org [http://plone.org/documentation/kb/build-a-custom-search-form-with-yafowil]
explains how to build a custom search form using YAFOWIL.

Werkzeug based frameworks

The package yafowil.werkzeug provides binding to Werkzeug based
frameworks, such as Flask or tipfy.

Boostrap Styles

The package yafowil.bootstrap ships with twitter bootstrap resources and
provides common widget configuration in order of a pretty look and feel.

 Copyright 2014, Robert Niederreiter, Jens Klein, et al.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	YAFOWIL - Yet Another Form Widget Library

Reference: Blueprints

This page contains documentation for available blueprints registered in the
factory. This list is auto*generated and contains documentation of the
following packages:

	yafowil (core package)

	yafowil.widget.ace

	yafowil.widget.array

	yafowil.widget.autocomplete

	yafowil.widget.chosen

	yafowil.widget.datetime

	yafowil.widget.dict

	yafowil.widget.dynatree

	yafowil.widget.image

	yafowil.widget.location

	yafowil.widget.multiselect

	yafowil.widget.recaptcha

	yafowil.widget.richtext

	yafowil.widget.select2

	yafowil.widget.slider

	yafowil.widget.wysihtml5

ace

Add-on blueprint yafowil.widget.ace [http://github.com/bluedynamics/yafowil.widget.ace/] .

Properties

	name
	default
	description

	mode
	'python'
	
ACE Mode.

Used by:
	ace_edit_renderer

	required
	False global
	
Whether this value is required or not.

Used by:
	generic_required_extractor

	required_message
	u'Mandatory field was empty' global
	
Message to be shown if required condition was not met.

Used by:
	generic_required_extractor

	theme
	'github'
	
ACE Theme.

Used by:
	ace_edit_renderer

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	generic_extractor

	generic_required_extractor

	
	ace_edit_renderer

	
	ace_display_renderer

	-/-
	-/-

array

Add-on widget yafowil.widget.array [http://github.com/bluedynamics/yafowil.widget.array/].

Properties

	name
	default
	description

	add
	True
	
Render add action.

Used by:
	array_wrapper_renderer

	class
	'array'
	
Common CSS-class to put on.

Used by:
	array_wrapper_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	array_wrapper_renderer

	error_class
	'error'
	
CSS-class to put on in case of error.

Used by:
	array_wrapper_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	array_wrapper_renderer

	remove
	True
	
Render remove action.

Used by:
	array_wrapper_renderer

	required
	False
	
Whether this value is required or not.

Used by:
	generic_required_extractor

	required_class
	None global
	
CSS-class to put on in case if required condition was not met.

Used by:
	array_wrapper_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	array_wrapper_renderer

	required_message
	u'Mandatory field was empty' global
	
Message to be shown if required condition was not met.

Used by:
	generic_required_extractor

	sort
	True
	
Render move up and move down actions.

Used by:
	array_wrapper_renderer

	static
	False
	
Array is immutable. No Array actions are rendered. If True, add,
remove and sort properties are ignored.

Used by:
	array_wrapper_renderer

	table_class
	None
	
CSS classes rendered on array table.

Used by:
	array_wrapper_renderer

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	array_extractor

	generic_required_extractor

	
	array_edit_renderer

	compound_renderer

	array_wrapper_renderer

	
	array_display_renderer

	compound_renderer

	-/-
	
	array_builder

autocomplete

Add-on blueprint yafowil.widget.autocomplete [http://github.com/bluedynamics/yafowil.widget.autocomplete/] utilizing
jquery.ui.autocomplete to offer the user a selection based on the input
given so far.

Properties

	name
	default
	description

	class
	'autocomplete'
	
Common CSS-class to put on.

Used by:
	input_generic_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	input_generic_renderer

	delay
	'300'
	
Delay in milliseconds.

Used by:
	autocomplete_renderer

	error_class
	None global
	
CSS-class to put on in case of error.

Used by:
	input_generic_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	input_generic_renderer

	minLength
	'1'
	
Minimum input length to trigger autocomplete.

Used by:
	autocomplete_renderer

	required
	False global
	
Whether this value is required or not.

Used by:
	generic_required_extractor

	required_class
	'required'
	
CSS-class to put on in case if required condition was not met.

Used by:
	input_generic_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	input_generic_renderer

	required_message
	u'Mandatory field was empty' global
	
Message to be shown if required condition was not met.

Used by:
	generic_required_extractor

	source
	required/ not set
	
Autocomplete source as python iterable or string defining JSON view callback.

Used by:
	autocomplete_renderer

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	generic_extractor

	generic_required_extractor

	autocomplete_extractor

	
	input_generic_renderer

	autocomplete_renderer

	-/-
	-/-
	-/-

checkbox

Single checkbox blueprint.

Properties

	name
	default
	description

	autofocus
	None global
	
Whether this field gets the focus automatically or not (if browser supports
it).

Used by:
	checkbox_edit_renderer

	checked
	None
	
Set ‘checked’ attribute explicit. If not given, compute by value.

Used by:
	checkbox_edit_renderer

	class
	'checkbox'
	
Common CSS-class to put on.

Used by:
	checkbox_edit_renderer

	checkbox_display_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	checkbox_edit_renderer

	data
	{} global
	
Additional data rendered as HTML5 data attributes on DOM Element.

Used by:
	checkbox_edit_renderer

	disabled
	False
	
Flag whether checkbox is disabled.

Used by:
	checkbox_edit_renderer

	display_proxy
	False global
	
If ‘True’ and widget mode ‘display’, widget value gets rendered as hidden
input.

Used by:
	checkbox_display_renderer

	error_class
	None global
	
CSS-class to put on in case of error.

Used by:
	checkbox_edit_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	checkbox_edit_renderer

	format
	'bool'
	
Data-type of the extracted value. One out of bool or string.

Used by:
	checkbox_extractor

	checkbox_edit_renderer

	checkbox_display_renderer

	required
	False global
	
Whether this value is required or not.

Used by:
	generic_required_extractor

	required_class
	'required'
	
CSS-class to put on in case if required condition was not met.

Used by:
	checkbox_edit_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	checkbox_edit_renderer

	required_message
	u'Mandatory field was empty' global
	
Message to be shown if required condition was not met.

Used by:
	generic_required_extractor

	size
	None global
	
Allowed input size.

Used by:
	checkbox_edit_renderer

	title
	None global
	
Optional help text to be rendered in the title attribute.

Used by:
	checkbox_edit_renderer

	vocabulary
	{False: u'No', True: u'Yes', <UNSET>: u'Unset'}
	
In display mode and if `bool` is set to `True` this mapping will be
used for display of the value. Expected keys are `True`, `False` and
`UNSET`.

Used by:
	checkbox_display_renderer

	with_label
	False
	
Render empty label tag after visible checkbox in order to make checkbox UI
customizable via CSS like so:

input.large_checkbox {
 display: none;
}
input.large_checkbox + label {
 width: 59px;
 height: 60px;
 background: url('/checkbox_large.png');
}
input.large_checkbox:checked + label {
 background: url('/checkbox_large_selected.png');
}

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	checkbox_extractor

	generic_required_extractor

	
	checkbox_edit_renderer

	
	checkbox_display_renderer

	-/-
	-/-

chosen

Add-on blueprint yafowil.widget.chosen [http://github.com/bluedynamics/yafowil.widget.chosen/] .

Properties

	name
	default
	description

	allow_single_deselect
	None
	
Allow deselection of single elements.

Used by:
	chosen_edit_renderer

	class
	'chosen'
	
Common CSS-class to put on.

Used by:
	select_display_renderer

	data
	{} global
	
Additional data rendered as HTML5 data attributes on DOM Element.

Used by:
	select_display_renderer

	disable_search
	None
	
Disable search at all.

Used by:
	chosen_edit_renderer

	disable_search_threshold
	None
	
Disable the threshold, when the search popup opens.

Used by:
	chosen_edit_renderer

	disabled
	None global
	
Disables input.

Used by:
	select_extractor

	max_selected_options
	None
	
Maximum number of selected options.

Used by:
	chosen_edit_renderer

	multivalued
	False
	

Used by:
	select_extractor

	select_display_renderer

	new_values
	None
	
Allow adding new values.
For: yafowil js integration.
Values: [True|False|None (default)].

Used by:
	chosen_edit_renderer

	no_results_text
	None
	
Text for no results.

Used by:
	chosen_edit_renderer

	placeholder_text
	None
	
Placeholder text.

Used by:
	chosen_edit_renderer

	required
	False global
	
Whether this value is required or not.

Used by:
	generic_required_extractor

	required_message
	u'Mandatory field was empty' global
	
Message to be shown if required condition was not met.

Used by:
	generic_required_extractor

	search_contains
	None
	
Search also for substrings. Allowed values [True|False|None]. When using
None or just not setting this value, the default of the Javascript widget is
used.

Used by:
	chosen_edit_renderer

	single_backstroke_delete
	None
	
A single backstroke deletes the selected option.

Used by:
	chosen_edit_renderer

	template
	'%s' global
	
Format string with pythons built-in string format template. If a callable
is given it will be used instead and is called with widget and data as
parameters.

Used by:
	select_display_renderer

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	select_extractor

	generic_required_extractor

	
	chosen_edit_renderer

	
	select_display_renderer

	-/-
	-/-

compound

A blueprint to create a compound of widgets. This blueprint creates a node. A
node can contain sub-widgets.

Properties

	name
	default
	description

	structural
	False global
	
If a compound is structural, it will be omitted in the dotted-path levels and
will not have an own runtime-data.

Used by:
	compound_extractor

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	compound_extractor

	
	compound_renderer

	
	compound_renderer

	-/-
	-/-

datetime

Add-on blueprint yafowil.widget.datetime [http://github.com/bluedynamics/yafowil.widget.datetime/] .

Properties

	name
	default
	description

	class
	'datetime'
	
Common CSS-class to put on.

Used by:
	datetime_edit_renderer

	datetime_display_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	datetime_edit_renderer

	datepicker
	False
	
Flag whether date picker is enabled.

Used by:
	datetime_edit_renderer

	datepicker_class
	'datepicker'
	
Flag whether date picker is enabled.

Used by:
	datetime_edit_renderer

	delimiter
	'-'
	
Delimiter used to render date in input field.

delimiter may be a callable taking widget and data as parameters expect to
return a delimiter string.

Used by:
	datetime_edit_renderer

	disabled
	False
	
Disables input.

Used by:
	datetime_edit_renderer

	error_class
	None global
	
CSS-class to put on in case of error.

Used by:
	datetime_edit_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	datetime_edit_renderer

	format
	'%Y-%m-%d %H:%M'
	
Pattern accepted by datetime.strftime or callable taking widget and
data as parameters returning unicode or utf-8 string. Used if widget mode is
display.

Used by:
	datetime_display_renderer

	locale
	'iso'
	
Date input format locale. yafowil.widget.datetime uses
bda.intellidatetime [http://pypi.python.org/pypi/bda.intellidatetime/] for
input parsing. Take a look at this package for available locales.

locale may be a callable taking widget and data as parameters expect to
return a locale string.

Used by:
	datetime_extractor

	datetime_edit_renderer

	required
	False global
	
Whether this value is required or not.

Used by:
	generic_required_extractor

	datetime_extractor

	required_class
	'required'
	
CSS-class to put on in case if required condition was not met.

Used by:
	datetime_edit_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	datetime_edit_renderer

	required_message
	u'Mandatory field was empty' global
	
Message to be shown if required condition was not met.

Used by:
	generic_required_extractor

	time
	False
	
Flag whether time input should be rendered.

time may be a callable taking widget and data as parameters expect to
return a boolean.

Used by:
	datetime_extractor

	datetime_edit_renderer

	timepicker
	False
	
Flag whether time picker is enabled.

Used by:
	datetime_edit_renderer

	timepicker_class
	'timepicker'
	
jquery.ui timepicker binds to this class.

Used by:
	datetime_edit_renderer

	tzinfo
	None
	
Python datetime tzinfo object.

tzinfo may be a callable taking widget and data as parameters expect to
return a tzinfo instance.

Used by:
	datetime_extractor

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	generic_extractor

	generic_required_extractor

	datetime_extractor

	
	datetime_edit_renderer

	
	datetime_display_renderer

	-/-
	-/-

dict

Add-on widget yafowil.widget.dict [http://github.com/bluedynamics/yafowil.widget.dict/].

Properties

	name
	default
	description

	class
	None global
	
Common CSS-class to put on.

Used by:
	dict_edit_renderer

	dict_builder

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	dict_edit_renderer

	dict_builder

	error_class
	'error'
	
CSS-class to put on in case of error.

Used by:
	dict_edit_renderer

	dict_builder

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	dict_edit_renderer

	dict_builder

	key_class
	'keyfield'
	
CSS classes rendered on key input fields.

	required
	False global
	
Whether this value is required or not.

Used by:
	dict_extractor

	required_class
	None global
	
CSS-class to put on in case if required condition was not met.

Used by:
	dict_edit_renderer

	dict_builder

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	dict_edit_renderer

	dict_builder

	static
	False
	
Makes keys immutable.

Used by:
	dict_extractor

	dict_edit_renderer

	dict_builder

	table_class
	'dictwidget'
	
CSS classes rendered on dict table.

Used by:
	dict_builder

	value_class
	'valuefield'
	
CSS classes rendered on value input fields.

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	dict_extractor

	
	dict_edit_renderer

	compound_renderer

	
	dict_display_renderer

	-/-
	
	dict_builder

div

Like compound blueprint but renders within ‘<div>’ element.

Properties

	name
	default
	description

	class
	None global
	
Common CSS-class to put on.

Used by:
	div_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	div_renderer

	error_class
	None global
	
CSS-class to put on in case of error.

Used by:
	div_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	div_renderer

	id
	None
	
HTML id attribute.

Used by:
	div_renderer

	required_class
	None global
	
CSS-class to put on in case if required condition was not met.

Used by:
	div_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	div_renderer

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	hybrid_extractor

	
	div_renderer

	
	div_renderer

	-/-
	-/-

dynatree

Add-on tree-widget yafowil.widget.dynatree [http://pypi.python.org/pypi/yafowil.widget.dynatree] utilizing the jQuery
plugin jquery.dynatree.js [http://wwwendt.de/tech/dynatree/index.html] (at
google-code [http://code.google.com/p/dynatree/]).

Additional this widget triggers the javascript event yafowilDynatreeSelect
via jQuery on elements with class dynatreeSelectSensitive.

Properties

	name
	default
	description

	autoCollapse
	False
	
Automatically collapse all siblings, when another node is expanded.

Used by:
	dynatree_renderer

	checkbox
	True
	
Wether to show checkboxes or not.

Used by:
	dynatree_renderer

	class
	None global
	
Common CSS-class to put on.

Used by:
	dynatree_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	dynatree_renderer

	error_class
	None global
	
CSS-class to put on in case of error.

Used by:
	dynatree_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	dynatree_renderer

	imagePath
	'skin-bootstrap'
	
Path to a folder containing icons.

Used by:
	dynatree_renderer

	minExpandLevel
	'1'
	
Number of levels which are not allowed to collapse.

Used by:
	dynatree_renderer

	required
	False global
	
Whether this value is required or not.

Used by:
	generic_required_extractor

	required_class
	None global
	
CSS-class to put on in case if required condition was not met.

Used by:
	dynatree_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	dynatree_renderer

	required_message
	u'Mandatory field was empty' global
	
Message to be shown if required condition was not met.

Used by:
	generic_required_extractor

	rootVisible
	False
	
Wether a root node is shown or not.

Used by:
	dynatree_renderer

	selectMode
	'1'
	
1=single selection, 2=multiple selection, 3=multi-hier-mode. In single
selection mode expected value is a string, in other modes a iterable of
strings.

Used by:
	dynatree_extractor

	dynatree_renderer

	source
	required/ not set
	
The vocabulary source. This can be either [o]dict, string or a a callable
returning one of both.

If a dict is passed or returned by the callable, the vocabulary is rendered
inline. The dict keys are used as values, dicts value is a tuple of (title,
children), where title is shown in the tree and children is either None or
a dict of the same structure.

If a string is passed it is considered as an URL to fetch the vocabulay
from. It is returned as JSON in the format described in the original
jquery.dynatreee.js documentation.

If a callable is passed it expects widget and data as parameters and has to
return either a string or a dict as described above.

Used by:
	dynatree_renderer

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	generic_extractor

	generic_required_extractor

	dynatree_extractor

	
	dynatree_renderer

	-/-
	-/-
	-/-

email

Email (HTML5) input blueprint.

Properties

	name
	default
	description

	class
	'email'
	
Common CSS-class to put on.

Used by:
	input_generic_renderer

	generic_display_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	input_generic_renderer

	display_proxy
	False global
	
If ‘True’ and widget mode ‘display’, widget value gets rendered as hidden
input.

Used by:
	display_proxy_renderer

	error_class
	None global
	
CSS-class to put on in case of error.

Used by:
	input_generic_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	input_generic_renderer

	required
	False global
	
Whether this value is required or not.

Used by:
	generic_required_extractor

	required_class
	'required'
	
CSS-class to put on in case if required condition was not met.

Used by:
	input_generic_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	input_generic_renderer

	required_message
	u'Mandatory field was empty' global
	
Message to be shown if required condition was not met.

Used by:
	generic_required_extractor

	template
	'%s' global
	
Format string with pythons built-in string format template. If a callable
is given it will be used instead and is called with widget and data as
parameters.

Used by:
	generic_display_renderer

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	generic_extractor

	generic_required_extractor

	email_extractor

	
	input_generic_renderer

	
	generic_display_renderer

	display_proxy_renderer

	-/-
	-/-

error

Renders a tag with an error-message and the prior rendered output.

Properties

	name
	default
	description

	class
	'error'
	
Common CSS-class to put on.

Used by:
	error_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	error_renderer

	error_class
	None global
	
CSS-class to put on in case of error.

Used by:
	error_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	error_renderer

	message_class
	'errormessage'
	
CSS class to apply to inner message-tag.

Used by:
	error_renderer

	message_tag
	'div'
	
HTML tag to use to enclose each error message.

Used by:
	error_renderer

	position
	'inner-before'
	
Error can be rendered at 3 different positions: before/ after the
prior rendered output or with inner-before/ inner-after it puts the
prior rendered output inside the tag used for the error message (beofre or
after the message.

Used by:
	error_renderer

	render_empty
	False
	
Render tag even if there is no error message.

Used by:
	error_renderer

	required_class
	None global
	
CSS-class to put on in case if required condition was not met.

Used by:
	error_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	error_renderer

	tag
	'div'
	
HTML tag to use to enclose all error messages.

Used by:
	error_renderer

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	-/-
	
	error_renderer

	
	empty_display_renderer

	-/-
	-/-

field

Renders a div with an class field around the prior rendered output. This is
supposed to be used for styling and grouping purposes.

Properties

	name
	default
	description

	class
	'field'
	
Common CSS-class to put on.

Used by:
	field_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	field_renderer

	error_class
	None global
	
CSS-class to put on in case of error.

Used by:
	field_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	field_renderer

	required_class
	None global
	
CSS-class to put on in case if required condition was not met.

Used by:
	field_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	field_renderer

	witherror
	None
	
Put the class given with this property on the div if an error happened.

Used by:
	field_renderer

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	-/-
	
	field_renderer

	
	field_renderer

	-/-
	-/-

fieldset

Renders a fieldset around the prior rendered output.

Properties

	name
	default
	description

	class
	None
	
Common CSS-class to put on.

Used by:
	fieldset_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	fieldset_renderer

	error_class
	None global
	
CSS-class to put on in case of error.

Used by:
	fieldset_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	fieldset_renderer

	legend
	False
	
Content of legend tag if legend should be rendered.

Used by:
	fieldset_renderer

	required_class
	None global
	
CSS-class to put on in case if required condition was not met.

Used by:
	fieldset_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	fieldset_renderer

	structural
	False global
	
If a compound is structural, it will be omitted in the dotted-path levels and
will not have an own runtime-data.

Used by:
	compound_extractor

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	compound_extractor

	
	compound_renderer

	fieldset_renderer

	
	compound_renderer

	fieldset_renderer

	-/-
	-/-

file

A basic file upload blueprint.

Properties

	name
	default
	description

	accept
	None
	
Accepted mimetype.

Used by:
	input_file_edit_renderer

	autofocus
	None global
	
Whether this field gets the focus automatically or not (if browser supports
it).

Used by:
	input_file_edit_renderer

	class
	None global
	
Common CSS-class to put on.

Used by:
	input_file_edit_renderer

	file_options_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	input_file_edit_renderer

	file_options_renderer

	error_class
	None global
	
CSS-class to put on in case of error.

Used by:
	input_file_edit_renderer

	file_options_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	input_file_edit_renderer

	file_options_renderer

	placeholder
	None global
	
Whether this input has a placeholder value or not (if browser supports it).

Used by:
	input_file_edit_renderer

	required
	False global
	
Whether this value is required or not.

Used by:
	generic_required_extractor

	input_file_edit_renderer

	required_class
	None global
	
CSS-class to put on in case if required condition was not met.

Used by:
	input_file_edit_renderer

	file_options_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	input_file_edit_renderer

	file_options_renderer

	required_message
	u'Mandatory field was empty' global
	
Message to be shown if required condition was not met.

Used by:
	generic_required_extractor

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	file_extractor

	generic_required_extractor

	
	input_file_edit_renderer

	file_options_renderer

	
	input_file_display_renderer

	-/-
	-/-

form

A html-form element as a compound of widgets.

Properties

	name
	default
	description

	action
	required/ not set
	
Target web address (URL) to send the form to.

Used by:
	form_edit_renderer

	class
	None global
	
Common CSS-class to put on.

Used by:
	form_edit_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	form_edit_renderer

	enctype
	'multipart/form-data'
	
Encryption type of the form. Only relevant for method post. Expect one out
of application/x-www-form-urlencoded or multipart/form-data.

Used by:
	form_edit_renderer

	error_class
	None global
	
CSS-class to put on in case of error.

Used by:
	form_edit_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	form_edit_renderer

	method
	'post'
	
One out of get or post.

Used by:
	form_edit_renderer

	novalidate
	True
	
Flag whether HTML5 form validation should be suppressed.

Used by:
	form_edit_renderer

	required_class
	None global
	
CSS-class to put on in case if required condition was not met.

Used by:
	form_edit_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	form_edit_renderer

	structural
	False global
	
If a compound is structural, it will be omitted in the dotted-path levels and
will not have an own runtime-data.

Used by:
	compound_extractor

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	compound_extractor

	
	compound_renderer

	form_edit_renderer

	
	compound_renderer

	form_display_renderer

	-/-
	-/-

help

Renders a tag with an help-message and the prior rendered output.

Properties

	name
	default
	description

	class
	'help'
	
Common CSS-class to put on.

Used by:
	help_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	help_renderer

	error_class
	None global
	
CSS-class to put on in case of error.

Used by:
	help_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	help_renderer

	help
	''
	
Help text.

Used by:
	help_renderer

	position
	'before'
	
Help can be rendered at 3 different positions: before/ after the
prior rendered output or with inner-before/ inner-after it puts the
prior rendered output inside the tag used for the help message (beofre or
after the message.

Used by:
	help_renderer

	render_empty
	False
	
Render tag even if there is no help message.

Used by:
	help_renderer

	required_class
	None global
	
CSS-class to put on in case if required condition was not met.

Used by:
	help_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	help_renderer

	tag
	'div'
	
HTML tag to use to enclose all help messages.

Used by:
	help_renderer

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	-/-
	
	help_renderer

	
	empty_display_renderer

	-/-
	-/-

hidden

Hidden input blueprint.

Properties

	name
	default
	description

	class
	'hidden'
	
Common CSS-class to put on.

Used by:
	input_generic_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	input_generic_renderer

	error_class
	None global
	
CSS-class to put on in case of error.

Used by:
	input_generic_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	input_generic_renderer

	required_class
	None global
	
CSS-class to put on in case if required condition was not met.

Used by:
	input_generic_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	input_generic_renderer

	type
	'hidden'
	
Type of input tag.

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	generic_extractor

	
	input_generic_renderer

	
	empty_display_renderer

	-/-
	-/-

image

Add-on widget yafowil.widget.image [http://github.com/bluedynamics/yafowil.widget.image/].

Properties

	name
	default
	description

	accept
	'image/*'
	
Accepted mimetype of image.

Used by:
	mimetype_extractor

	input_file_edit_renderer

	alt
	''
	
Image alternative text.

Used by:
	image_edit_renderer

	image_display_renderer

	autofocus
	None global
	
Whether this field gets the focus automatically or not (if browser supports
it).

Used by:
	input_file_edit_renderer

	class
	'image'
	
Common CSS-class to put on.

Used by:
	input_file_edit_renderer

	file_options_renderer

	image_edit_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	input_file_edit_renderer

	file_options_renderer

	image_edit_renderer

	crop
	None
	
Crop extracted file to size at offset. The created cropped image gets placed
in the return value returned by file extractor under key cropped. Crop
definition is a dict containing:

	size

	(width, height), mandatory

	offset

	(left, top), defaults to (0, 0)

	fitting

	Boolean, ignores offset if True, scales image to smaller site of size
and centers larger one.

Used by:
	crop_extractor

	error_class
	'error'
	
CSS-class to put on in case of error.

Used by:
	input_file_edit_renderer

	file_options_renderer

	image_edit_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	input_file_edit_renderer

	file_options_renderer

	image_edit_renderer

	maxdpi
	None
	
Maximum DPI of image defined as 2-tuple containing (x, y).

Used by:
	dpi_extractor

	maxsize
	None
	
Maximum size of image defined as 2-tuple containing (width, height) in
pixel as integer.

Used by:
	size_extractor

	mindpi
	None
	
Minimum DPI of image defined as 2-tuple containing (x, y).

Used by:
	dpi_extractor

	minsize
	None
	
Minimum size of image defined as 2-tuple containing (width, height) in
pixel as integer.

Used by:
	size_extractor

	placeholder
	None global
	
Whether this input has a placeholder value or not (if browser supports it).

Used by:
	input_file_edit_renderer

	required
	False
	
Whether this value is required or not.

Used by:
	generic_required_extractor

	input_file_edit_renderer

	required_class
	None global
	
CSS-class to put on in case if required condition was not met.

Used by:
	input_file_edit_renderer

	file_options_renderer

	image_edit_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	input_file_edit_renderer

	file_options_renderer

	image_edit_renderer

	required_message
	u'Mandatory field was empty' global
	
Message to be shown if required condition was not met.

Used by:
	generic_required_extractor

	scales
	None
	
Scales to create on extraction. Scales are defined as dict, where the key
represents the scale name and the value is a 2-tuple containing (width, height)
in pixel. The created scales get placed in the return value returned by file
extractor under key scales.

Used by:
	scales_extractor

	src
	None
	
Image URL if image present and displaying is desired.

Used by:
	image_edit_renderer

	image_display_renderer

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	file_extractor

	generic_required_extractor

	mimetype_extractor

	image_extractor

	size_extractor

	dpi_extractor

	scales_extractor

	crop_extractor

	
	input_file_edit_renderer

	file_options_renderer

	image_edit_renderer

	
	image_display_renderer

	-/-
	-/-

label

Label blueprint.

Properties

	name
	default
	description

	class
	None global
	
Common CSS-class to put on.

Used by:
	label_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	label_renderer

	error_class
	None global
	
CSS-class to put on in case of error.

Used by:
	label_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	label_renderer

	for
	None
	
Optional dottedpath of widget to be labled

Used by:
	label_renderer

	label
	required/ not set
	
Text to be displayed as a label.

Used by:
	label_renderer

	position
	'before'
	
Label can be rendered at 3 different positions: before or after the
prior rendered output or with inner it puts the prior rendered output
inside the label tag.

Used by:
	label_renderer

	required_class
	None global
	
CSS-class to put on in case if required condition was not met.

Used by:
	label_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	label_renderer

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	-/-
	
	label_renderer

	
	label_renderer

	-/-
	-/-

lines

Lines blueprint. Renders a textarea and extracts lines as list.

Properties

	name
	default
	description

	autofocus
	None global
	
Whether this field gets the focus automatically or not (if browser supports
it).

Used by:
	lines_edit_renderer

	class
	None global
	
Common CSS-class to put on.

Used by:
	lines_edit_renderer

	lines_display_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	lines_edit_renderer

	cols
	40
	
Number of characters.

Used by:
	lines_edit_renderer

	data
	{} global
	
Additional data rendered as HTML5 data attributes on DOM Element.

Used by:
	lines_edit_renderer

	lines_display_renderer

	disabled
	None global
	
Disables input.

Used by:
	lines_edit_renderer

	display_proxy
	False global
	
If ‘True’ and widget mode ‘display’, widget value gets rendered as hidden
input.

Used by:
	display_proxy_renderer

	error_class
	None global
	
CSS-class to put on in case of error.

Used by:
	lines_edit_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	lines_edit_renderer

	placeholder
	None global
	
Whether this input has a placeholder value or not (if browser supports it).

Used by:
	lines_edit_renderer

	readonly
	None
	
Flag textarea is readonly.

Used by:
	lines_edit_renderer

	required
	False global
	
Whether this value is required or not.

Used by:
	generic_required_extractor

	lines_edit_renderer

	required_class
	None global
	
CSS-class to put on in case if required condition was not met.

Used by:
	lines_edit_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	lines_edit_renderer

	required_message
	u'Mandatory field was empty' global
	
Message to be shown if required condition was not met.

Used by:
	generic_required_extractor

	rows
	8
	
Number of lines.

Used by:
	lines_edit_renderer

	title
	None global
	
Optional help text to be rendered in the title attribute.

Used by:
	lines_edit_renderer

	wrap
	None
	
Either soft, hard, virtual, physical or off.

Used by:
	lines_edit_renderer

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	generic_extractor

	generic_required_extractor

	lines_extractor

	
	lines_edit_renderer

	
	lines_display_renderer

	display_proxy_renderer

	-/-
	-/-

location

Add-on blueprint
yafowil.widget.location [http://github.com/bluedynamics/yafowil.widget.location/]

Properties

	name
	default
	description

	class
	'location'
	
Common CSS-class to put on.

Used by:
	location_edit_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	location_edit_renderer

	error_class
	'error'
	
CSS-class to put on in case of error.

Used by:
	location_edit_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	location_edit_renderer

	lat
	47.2667
	
Initial map center point latitude (north/south).

Used by:
	location_edit_renderer

	lon
	11.3833
	
Initial map center point longitude (east/west).

Used by:
	location_edit_renderer

	min_zoom
	2
	
Maximum map zoom level.

	required
	False
	
Whether this value is required or not.

Used by:
	generic_required_extractor

	required_class
	None global
	
CSS-class to put on in case if required condition was not met.

Used by:
	location_edit_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	location_edit_renderer

	required_message
	u'Mandatory field was empty' global
	
Message to be shown if required condition was not met.

Used by:
	generic_required_extractor

	zoom
	12
	
Initial map zoom level.

Used by:
	location_edit_renderer

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	location_extractor

	generic_required_extractor

	
	location_edit_renderer

	
	location_display_renderer

	-/-
	-/-

multiselect

Add-on blueprint yafowil.widget.multiselect [http://github.com/bluedynamics/yafowil.widget.multiselect/] .

Properties

	name
	default
	description

	autofocus
	None global
	
Whether this field gets the focus automatically or not (if browser supports
it).

Used by:
	select_edit_renderer

	block_class
	required/ not set
	

Used by:
	select_edit_renderer

	class
	'multiselect'
	
Common CSS-class to put on.

Used by:
	select_edit_renderer

	select_display_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	select_edit_renderer

	data
	{} global
	
Additional data rendered as HTML5 data attributes on DOM Element.

Used by:
	select_edit_renderer

	select_display_renderer

	disabled
	None global
	
Disables input.

Used by:
	select_extractor

	select_edit_renderer

	error_class
	None global
	
CSS-class to put on in case of error.

Used by:
	select_edit_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	select_edit_renderer

	format
	'block'
	

Used by:
	select_edit_renderer

	label_checkbox_class
	required/ not set
	

Used by:
	select_edit_renderer

	label_radio_class
	required/ not set
	

Used by:
	select_edit_renderer

	listing_label_position
	required/ not set
	

Used by:
	select_edit_renderer

	listing_tag
	required/ not set
	

Used by:
	select_edit_renderer

	multivalued
	True
	

Used by:
	select_extractor

	select_edit_renderer

	select_display_renderer

	placeholder
	None global
	
Whether this input has a placeholder value or not (if browser supports it).

Used by:
	select_edit_renderer

	required
	False global
	
Whether this value is required or not.

Used by:
	generic_required_extractor

	required_class
	None global
	
CSS-class to put on in case if required condition was not met.

Used by:
	select_edit_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	select_edit_renderer

	required_message
	u'Mandatory field was empty' global
	
Message to be shown if required condition was not met.

Used by:
	generic_required_extractor

	size
	None
	
Allowed input size.

Used by:
	select_edit_renderer

	template
	'%s' global
	
Format string with pythons built-in string format template. If a callable
is given it will be used instead and is called with widget and data as
parameters.

Used by:
	select_display_renderer

	title
	None global
	
Optional help text to be rendered in the title attribute.

Used by:
	select_edit_renderer

	vocabulary
	required/ not set
	

Used by:
	select_edit_renderer

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	select_extractor

	generic_required_extractor

	
	select_edit_renderer

	
	select_display_renderer

	-/-
	-/-

number

Number blueprint (HTML5).

Properties

	name
	default
	description

	class
	'number'
	
Common CSS-class to put on.

Used by:
	input_generic_renderer

	generic_display_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	input_generic_renderer

	datatype
	'float'
	
Output datatype, one out of integer or float.

Used by:
	number_extractor

	display_proxy
	False global
	
If ‘True’ and widget mode ‘display’, widget value gets rendered as hidden
input.

Used by:
	display_proxy_renderer

	error_class
	None global
	
CSS-class to put on in case of error.

Used by:
	input_generic_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	input_generic_renderer

	max
	None
	
Maximum value.

Used by:
	number_extractor

	min
	None
	
Minimum value.

Used by:
	number_extractor

	required
	False global
	
Whether this value is required or not.

Used by:
	generic_required_extractor

	required_class
	'required'
	
CSS-class to put on in case if required condition was not met.

Used by:
	input_generic_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	input_generic_renderer

	required_message
	u'Mandatory field was empty' global
	
Message to be shown if required condition was not met.

Used by:
	generic_required_extractor

	step
	None
	
Stepping value must be in.

Used by:
	number_extractor

	template
	'%s' global
	
Format string with pythons built-in string format template. If a callable
is given it will be used instead and is called with widget and data as
parameters.

Used by:
	generic_display_renderer

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	generic_extractor

	generic_required_extractor

	number_extractor

	
	input_generic_renderer

	
	generic_display_renderer

	display_proxy_renderer

	-/-
	-/-

password

Password blueprint.

The password is never rendered to markup, instead
yafowil.common.PASSWORD_NOCHANGE_VALUE is set as value property on
dom element. See yafowil.common.password_extractor for details on
password extraction.

Properties

	name
	default
	description

	ascii
	False
	
Flag ascii check should performed.

Used by:
	ascii_extractor

	autocomplete
	None global
	
Switch autocomplete explizit to on or off.

Used by:
	password_edit_renderer

	autofocus
	None global
	
Whether this field gets the focus automatically or not (if browser supports
it).

Used by:
	password_edit_renderer

	class
	'password'
	
Common CSS-class to put on.

Used by:
	password_edit_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	password_edit_renderer

	data
	{} global
	
Additional data rendered as HTML5 data attributes on DOM Element.

Used by:
	password_edit_renderer

	disabled
	None global
	
Disables input.

Used by:
	password_edit_renderer

	displayplaceholder
	u'********'
	
Placeholder shown in display mode if password was set.

Used by:
	password_display_renderer

	error_class
	None global
	
CSS-class to put on in case of error.

Used by:
	password_edit_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	password_edit_renderer

	minlength
	-1
	
Minimum length of password.

Used by:
	minlength_extractor

	placeholder
	None global
	
Whether this input has a placeholder value or not (if browser supports it).

Used by:
	password_edit_renderer

	required
	False global
	
Whether this value is required or not.

Used by:
	generic_required_extractor

	required_class
	'required'
	
CSS-class to put on in case if required condition was not met.

Used by:
	password_edit_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	password_edit_renderer

	required_message
	u'Mandatory field was empty' global
	
Message to be shown if required condition was not met.

Used by:
	generic_required_extractor

	size
	None global
	
Maximum length of password.

Used by:
	password_edit_renderer

	strength
	-1
	
Integer value <= 4. Define how many rules must apply to consider a password
valid.

Used by:
	password_extractor

	title
	None global
	
Optional help text to be rendered in the title attribute.

Used by:
	password_edit_renderer

	weak_password_message
	u'Password too weak' global
	
Message shown if password is not strong enough.

Used by:
	password_extractor

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	generic_extractor

	generic_required_extractor

	minlength_extractor

	ascii_extractor

	password_extractor

	
	password_edit_renderer

	
	password_display_renderer

	-/-
	-/-

proxy

Bypass arguments out of form namespace using a hidden field.

Properties

	name
	default
	description

	class
	None
	
Common CSS-class to put on.

Used by:
	input_proxy_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	input_proxy_renderer

	error_class
	None global
	
CSS-class to put on in case of error.

Used by:
	input_proxy_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	input_proxy_renderer

	required_class
	None global
	
CSS-class to put on in case if required condition was not met.

Used by:
	input_proxy_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	input_proxy_renderer

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	generic_extractor

	
	input_proxy_renderer

	
	empty_display_renderer

	-/-
	-/-

recaptcha

Add-on blueprint
yafowil.widget.recaptcha [http://github.com/bluedynamics/yafowil.widget.recaptcha/]

Properties

	name
	default
	description

	lang
	'en'
	
Language code.

Used by:
	recaptcha_edit_renderer

	private_key
	''
	
reCAPTCHA private key. Used when communicating between your server and our
server. Be sure to keep it a secret.

Used by:
	recaptcha_edit_renderer

	public_key
	''
	
reCAPTCHA public key. Used in the JavaScript code that is served to your users.

Used by:
	recaptcha_edit_renderer

	theme
	'red'
	
Used Theme. Available default themes are ‘red’ (Default), ‘white’, ‘blackglass’
and ‘clean’.

Used by:
	recaptcha_edit_renderer

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	recaptcha_extractor

	generic_extractor

	
	recaptcha_edit_renderer

	
	recaptcha_display_renderer

	-/-
	-/-

richtext

Add-on blueprint yafowil.widget.richtext [http://github.com/bluedynamics/yafowil.widget.richtext/] .

Properties

	name
	default
	description

	autofocus
	None global
	
Whether this field gets the focus automatically or not (if browser supports
it).

Used by:
	textarea_renderer

	class
	'richtext'
	
Common CSS-class to put on.

Used by:
	textarea_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	textarea_renderer

	cols
	80
	
Number of characters.

Used by:
	textarea_renderer

	data
	{} global
	
Additional data rendered as HTML5 data attributes on DOM Element.

Used by:
	textarea_renderer

	disabled
	None global
	
Disables input.

Used by:
	textarea_renderer

	error_class
	None global
	
CSS-class to put on in case of error.

Used by:
	textarea_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	textarea_renderer

	placeholder
	None global
	
Whether this input has a placeholder value or not (if browser supports it).

Used by:
	textarea_renderer

	readonly
	None
	
Flag for readonly.

Used by:
	textarea_renderer

	required
	False global
	
Whether this value is required or not.

Used by:
	generic_required_extractor

	textarea_renderer

	required_class
	None global
	
CSS-class to put on in case if required condition was not met.

Used by:
	textarea_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	textarea_renderer

	required_message
	u'Mandatory field was empty' global
	
Message to be shown if required condition was not met.

Used by:
	generic_required_extractor

	rows
	25
	
Number of lines.

Used by:
	textarea_renderer

	title
	None global
	
Optional help text to be rendered in the title attribute.

Used by:
	textarea_renderer

	wrap
	None
	
Either soft, hard, virtual, physical or off.

Used by:
	textarea_renderer

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	generic_extractor

	generic_required_extractor

	
	textarea_renderer

	
	richtext_display_renderer

	-/-
	-/-

search

Search blueprint (HTML5).

Properties

	name
	default
	description

	class
	'search'
	
Common CSS-class to put on.

Used by:
	input_generic_renderer

	generic_display_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	input_generic_renderer

	display_proxy
	False global
	
If ‘True’ and widget mode ‘display’, widget value gets rendered as hidden
input.

Used by:
	display_proxy_renderer

	error_class
	None global
	
CSS-class to put on in case of error.

Used by:
	input_generic_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	input_generic_renderer

	required
	False global
	
Whether this value is required or not.

Used by:
	generic_required_extractor

	required_class
	'required'
	
CSS-class to put on in case if required condition was not met.

Used by:
	input_generic_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	input_generic_renderer

	required_message
	u'Mandatory field was empty' global
	
Message to be shown if required condition was not met.

Used by:
	generic_required_extractor

	template
	'%s' global
	
Format string with pythons built-in string format template. If a callable
is given it will be used instead and is called with widget and data as
parameters.

Used by:
	generic_display_renderer

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	generic_extractor

	generic_required_extractor

	
	input_generic_renderer

	
	generic_display_renderer

	display_proxy_renderer

	-/-
	-/-

select

Selection Blueprint. Single selection as dropdown or radio-buttons. Multiple
selection as selection-list or as checkboxes.

Properties

	name
	default
	description

	autofocus
	None global
	
Whether this field gets the focus automatically or not (if browser supports
it).

Used by:
	select_edit_renderer

	block_class
	None
	
CSS class to render on selection if block format.

Used by:
	select_edit_renderer

	checkbox_label_class
	None
	
CSS class to render on checkbox labels.

	checkbox_wrapper_class
	None
	
CSS class to render on checkbox wrapper.

	class
	'select'
	
Common CSS-class to put on.

Used by:
	select_edit_renderer

	select_display_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	select_edit_renderer

	data
	{} global
	
Additional data rendered as HTML5 data attributes on DOM Element.

Used by:
	select_edit_renderer

	select_display_renderer

	disabled
	None global
	
Disables the whole widget or single selections. To disable the whole widget
set the value to ‘True’. To disable single selection pass a iterable of keys to
disable, i.e. ['foo', 'baz']. Defaults to False.

Used by:
	select_extractor

	select_edit_renderer

	display_proxy
	False global
	
If ‘True’ and widget mode ‘display’, widget value gets rendered as hidden
input.

Used by:
	display_proxy_renderer

	error_class
	None global
	
CSS-class to put on in case of error.

Used by:
	select_edit_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	select_edit_renderer

	format
	'block'
	
Every value except ‘block’ results in either a list of radio buttons or
checkboxes depending on the ‘multivalued’ property.

Used by:
	select_edit_renderer

	label_checkbox_class
	None
	
CSS class to render on checkbox labels.

This property is deprecated and will be remove as of yafowil 2.2. Use
checkbox_label_class instead.

Used by:
	select_edit_renderer

	label_radio_class
	None
	
CSS class to render on radio button labels.

This property is deprecated and will be remove as of yafowil 2.2. Use
radio_label_class instead.

Used by:
	select_edit_renderer

	listing_label_position
	'inner-after'
	
Label position if format is ‘single’. Behaves the same way as label widget
position property.

Used by:
	select_edit_renderer

	listing_tag
	'div'
	
Desired rendering tag for selection if selection format is ‘single’. Valid
values are ‘div’ and ‘ul’.

Used by:
	select_edit_renderer

	multivalued
	None
	
Flag whether multiple items can be selected.

Used by:
	select_extractor

	select_edit_renderer

	select_display_renderer

	placeholder
	None global
	
Whether this input has a placeholder value or not (if browser supports it).

Used by:
	select_edit_renderer

	radio_label_class
	None
	
CSS class to render on radio button labels.

	radio_wrapper_class
	None
	
CSS class to render on radio button wrapper.

	required
	False global
	
Whether this value is required or not.

Used by:
	generic_required_extractor

	required_class
	None global
	
CSS-class to put on in case if required condition was not met.

Used by:
	select_edit_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	select_edit_renderer

	required_message
	u'Mandatory field was empty' global
	
Message to be shown if required condition was not met.

Used by:
	generic_required_extractor

	size
	None
	
Size of input if multivalued and format ‘block’.

Used by:
	select_edit_renderer

	template
	'%s' global
	
Format string with pythons built-in string format template. If a callable
is given it will be used instead and is called with widget and data as
parameters.

Used by:
	select_display_renderer

	title
	None global
	
Optional help text to be rendered in the title attribute.

Used by:
	select_edit_renderer

	vocabulary
	required/ not set
	
Vocabulary to be used for the selection list. Expects a dict-like or an
iterable or a callable which returns one of both first. An iterable can consist
out of strings or out of tuples with (key, value). The items in the result
list are in the same order like the vocabulary.

Used by:
	select_edit_renderer

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	select_extractor

	generic_required_extractor

	
	select_edit_renderer

	
	select_display_renderer

	display_proxy_renderer

	-/-
	-/-

select2

Add-on blueprint yafowil.widget.select2 [http://github.com/bluedynamics/yafowil.widget.select2/]

Integrates Select2 Widget [http://ivaynberg.github.io/select2/]

Detailed widget documentation [http://ivaynberg.github.io/select2/#documentation]

Properties

	name
	default
	description

	adaptContainerCssClass
	None
	
Function that filters/renames css classes as they are copied from the
source tag to the select2 container tag:

adaptContainerCssClass(clazz)

The default implementation applies all classes without modification.

Used by:
	select2_edit_renderer

	adaptDropdownCssClass
	None
	
Function that filters/renames css classes as they are copied from the
source tag to the select2 dropdown tag:

adaptDropdownCssClass(clazz)

The default implementation always returns null thereby filtering out all
classes.

Used by:
	select2_edit_renderer

	ajax
	None
	
Options for the built in ajax query function. This object acts as a
shortcut for having to manually write a function that performs ajax requests.
The built-in function supports more advanced features such as throttling and
dropping out-of-order responses.

In order for this function to work Select2 should be attached to a input
type=’hidden’ tag instead of a select.

Used by:
	select2_edit_renderer

	ajaxurl
	None
	
Ajax URL to JSON view returning an array of objects like:

[{id: 'id', text: 'text'}]

Used by:
	select2_edit_renderer

	allowClear
	None
	
Whether or not a clear button is displayed when the select box has a
selection. The button, when clicked, resets the value of the select box back
to the placeholder, thus this option is only available when the placeholder is
specified.

This option only works when the placeholder is specified.

When attached to a select an option with an empty value must be provided. This
is the option that will be selected when the button is pressed since a select
box requires at least one selection option.

Also, note that this option only works with non-multi-value based selects
because multi-value selects always provide such a button for every selected
option.

Used by:
	select2_edit_renderer

	closeOnSelect
	None
	
If set to false the dropdown is not closed after a selection is made,
allowing for rapid selection of multiple items. By default this option is set
to true.

Only applies when configured in multi-select mode.

Used by:
	select2_edit_renderer

	containerCss
	None
	
Inline css that will be added to select2’s container. Either an object
containing css property/value key pairs or a function that returns such an
object.

Used by:
	select2_edit_renderer

	containerCssClass
	None
	
Css class that will be added to select2’s container tag.

Used by:
	select2_edit_renderer

	createSearchChoice
	None
	
Creates a new selectable choice from user’s search term. Allows creation of
choices not available via the query function. Useful when the user can create
choices on the fly, eg for the ‘tagging’ usecase:

createSearchChoice(term)

If the function returns undefined or null no choice will be created. If a new
choice is created it is displayed first in the selection list so that user
may select it by simply pressing enter.

When used in combination with input[type=hidden] tag care must be taken to
sanitize the id attribute of the choice object, especially stripping , as it
is used as a value separator.

Used by:
	select2_edit_renderer

	createSearchChoicePosition
	None
	
Define the position where to insert element created by createSearchChoice.
The following values are supported:

	top

	Insert in the top of the list

	bottom

	Insert at the end of the list

	function

	A custom function. For example if you want to insert the new item in the
second position:

$("#tags").select2({
 ...
 createSearchChoice: function(term) { ... },
 createSearchChoicePosition: function(list, item) {
 list.splice(1, 0, item);
 }
});

Used by:
	select2_edit_renderer

	data
	None
	
Options for the built in query function that works with arrays.

If this element contains an array, each element in the array must contain id
and text keys.

Alternatively, this element can be specified as an object in which results
key must contain the data as an array and a text key can either be the name
of the key in data items that contains text or a function that retrieves
the text given a data element from the array.

Used by:
	select2_edit_renderer

	dropdownAutoWidth
	None
	
When set to true attempts to automatically size the width of the dropdown
based on content inside.

Used by:
	select2_edit_renderer

	dropdownCss
	None
	
Inline css that will be added to select2’s dropdown container. Either an
object containing css property/value key pairs or a function that returns such
an object.

Used by:
	select2_edit_renderer

	dropdownCssClass
	None
	
Css class that will be added to select2’s dropdown container.

Used by:
	select2_edit_renderer

	escapeMarkup
	None
	
String escapeMarkup(String markup)

Function used to post-process markup returned from formatter functions. By
default this function escapes html entities to prevent javascript injection.

Used by:
	select2_edit_renderer

	formatInputTooLong
	None
	
String containing “Search input too long” message, or Function used to
render the message:

formatInputTooLong(term, maxLength)

Used by:
	select2_edit_renderer

	formatInputTooShort
	None
	
String containing “Search input too short” message, or Function used to
render the message:

formatInputTooShort(term, minLength)

Used by:
	select2_edit_renderer

	formatLoadMore
	None
	
String containing “Loading more results” message, or Function used to
render the message:

formatLoadMore(pageNumber)

Used by:
	select2_edit_renderer

	formatNoMatches
	None
	
String containing “No matches” message, or
Function used to render the message:

formatNoMatches(term)

Used by:
	select2_edit_renderer

	formatResult
	None
	
Function used to render a result that the user can select:

formatResult(object, container, query)

The default implementation expects the object to have a text property that is
returned.

The implementation may choose to append elements directly to the provided
container object, or return a single value and have it automatically appended.

When attached to a select the original <option> (or <optgroup>) element is
accessible inside the specified function through the property item.element:

format(item) {
 var originalOption = item.element;
 return item.text
}

Used by:
	select2_edit_renderer

	formatResultCssClass
	None
	
Function used to add css classes to result elements:

formatResultCssClass(object)

By default when attached to a select css classes from options will be
automatically copied.

Used by:
	select2_edit_renderer

	formatSearching
	None
	
String containing “Searching...” message, or
Function used to render the message that is displayed while search is in
progress:

formatSearching()

Used by:
	select2_edit_renderer

	formatSelection
	None
	
Function used to render the current selection:

formatSelection(object, container)

The default implementation expects the object to have a text property that is
returned.

The implementation may choose to append elements directly to the provided
container object, or return a single value and have it automatically appended.

When attached to a select the original <option> (or <optgroup>) element is
accessible inside the specified function through the property item.element:

format(item) {
 var originalOption = item.element;
 return item.text
}

Used by:
	select2_edit_renderer

	formatSelectionTooBig
	None
	
String containing “You cannot select any more choices” message, or Function
used to render the message:

formatSelectionTooBig(maxSize)

Used by:
	select2_edit_renderer

	id
	None
	
Function used to get the id from the choice object or a string representing
the key under which the id is stored:

id(object)

The default implementation expects the object to have a id property that is
returned.

Used by:
	select2_edit_renderer

	initSelection
	None
	
Called when Select2 is created to allow the user to initialize the
selection based on the value of the element select2 is attached to.

Essentially this is an id->object mapping function:

initSelection(element, callback)

This function will only be called when there is initial input to be processed.

Used by:
	select2_edit_renderer

	inputtag
	False
	
Render widget as input element instead of selection.

Used by:
	select2_extractor

	select2_edit_renderer

	loadMorePadding
	None
	
Defines how many pixels need to be below the fold before the next page is
loaded. The default value is 0 which means the result list needs to be
scrolled all the way to the bottom for the next page of results to be loaded.
This option can be used to trigger the load sooner, possibly resulting in a
smoother user experience.

Used by:
	select2_edit_renderer

	matcher
	None
	
Used to determine whether or not the search term matches an option when a
built-in query function is used. The built in query function is used when
Select2 is attached to a select, or the local or tags helpers are used:

matcher(term, text, option)

The default implementation is case insensitive and matches anywhere in the
term:

function(term, text) {
 return text.toUpperCase().indexOf(term.toUpperCase()) >= 0;
}

Used by:
	select2_edit_renderer

	maximumInputLength
	None
	
Maximum number of characters that can be entered for an input.

Used by:
	select2_edit_renderer

	maximumSelectionSize
	None
	
The maximum number of items that can be selected in a multi-select control.
If this number is less than 1 selection is not limited.

Once the number of selected items reaches the maximum specified the contents
of the dropdown will be populated by the formatSelectionTooBig function.

Used by:
	select2_edit_renderer

	minimumInputLength
	None
	
Number of characters necessary to start a search.

Used by:
	select2_edit_renderer

	minimumResultsForSearch
	None
	
The minimum number of results that must be initially (after opening the
dropdown for the first time) populated in order to keep the search field.
This is useful for cases where local data is used with just a few results,
in which case the search box is not very useful and wastes screen space.

The option can be set to a negative value to permanently hide the search field.

Only applies to single-value select boxes.

Used by:
	select2_edit_renderer

	multiple
	None
	
Whether or not Select2 allows selection of multiple values.

When Select2 is attached to a select element this value will be ignored and
select’s multiple attribute will be used instead.

Used by:
	select2_edit_renderer

	nextSearchTerm
	None
	
Function used to determine what the next search term should be.

Function can be used when the dropdown is configured in single and
multi-select mode. It is triggered after selecting an item. In single mode
it is also triggered after initSelection (when provided).

Used by:
	select2_edit_renderer

	openOnEnter
	None
	
If set to true the dropdown is opened when the user presses the enter key
and Select2 is closed. By default this option is enabled.

Used by:
	select2_edit_renderer

	placeholder
	None
	
Initial value that is selected if no other selection is made.

The placeholder can also be specified as a data-placeholder attribute on the
select or input element that Select2 is attached to.

Note that because browsers assume the first option element is selected in
non-multi-value select boxes an empty first option element must be provided
(<option></option>) for the placeholder to work.

Used by:
	select2_edit_renderer

	placeholderOption
	None
	
When attached to a select resolves the option that should be used as the
placeholder. Can either be a function which given the select element should
return the option element or a string first to indicate that the first option
should be used.

This option is useful when Select2’s default of using the first option only if
it has no value and no text is not suitable.

Used by:
	select2_edit_renderer

	query
	None
	
Function used to query results for the search term:

query(options)

In order for this function to work Select2 should be attached to a input
type=’hidden’ tag instead of a select.

Used by:
	select2_edit_renderer

	required
	False global
	
Whether this value is required or not.

Used by:
	generic_required_extractor

	required_message
	u'Mandatory field was empty' global
	
Message to be shown if required condition was not met.

Used by:
	generic_required_extractor

	selectOnBlur
	None
	
Set to true if you want Select2 to select the currently highlighted option
when it is blurred.

Used by:
	select2_edit_renderer

	separator
	None
	
Separator character or string used to delimit ids in value attribute of the
multi-valued selects. The default delimiter is the , character.

Used by:
	select2_edit_renderer

	sortResults
	None
	
Used to sort the results list for searching right before display.
Useful for sorting matches by relevance to the user’s search term:

sortResults(results, container, query)

Defaults to no sorting:

function(results, container, query) {
 return results;
}

Used by:
	select2_edit_renderer

	tags
	None
	
Puts Select2 into ‘tagging’ mode where the user can add new choices and
pre-existing tags are provided via this options attribute which is either an
array or a function that returns an array of objects or strings. If strings
are used instead of objects they will be converted into an object that has
an id and text attribute equal to the value of the string.

Used by:
	select2_edit_renderer

	tokenSeparators
	None
	
An array of strings that define token separators for the default tokenizer
function. By default, this option is set to an empty array which means
tokenization using the default tokenizer is disabled. Usually it is sensible
to set this option to a value similar to [‘,’, ‘ ‘].

Used by:
	select2_edit_renderer

	tokenizer
	None
	
A tokenizer function can process the input typed into the search field after
every keystroke and extract and select choices. This is useful, for example,
in tagging scenarios where the user can create tags quickly by separating
them with a comma or a space instead of pressing enter.

Tokenizer only applies to multi-selects:

tokenizer(input, selection, selectCallback, opts)

Used by:
	select2_edit_renderer

	width
	None
	
Controls the width style attribute of the Select2 container div.
The following values are supported:

	off

	No width attribute will be set. Keep in mind that the container div copies
classes from the source element so setting the width attribute may not
always be necessary.

	element

	Uses javascript to calculate the width of the source element.

	copy

	Copies the value of the width style attribute set on the source element.

	resolve

	First attempts to copy than falls back on element.

	other values

	if the width attribute contains a function it will be evaluated, otherwise
the value is used verbatim.

Used by:
	select2_edit_renderer

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	select2_extractor

	generic_required_extractor

	
	select2_edit_renderer

	
	select2_display_renderer

	-/-
	-/-

slider

Add-on blueprint yafowil.widget.slider [http://github.com/bluedynamics/yafowil.widget.slider/] .

Properties

	name
	default
	description

	change
	None
	
Optional Javascript change callback as string.

Used by:
	slider_edit_renderer

	data
	{}
	
Additional data redered as HTML data attributes on slider wrapper
DOM Element.

Used by:
	slider_edit_renderer

	height
	None
	
Height of slider if orientation is vertical in pixel.

Used by:
	slider_edit_renderer

	max
	None
	
Maximum slider value value. Defaults to 100.

Used by:
	slider_edit_renderer

	min
	None
	
Minimum slider value. Defaults to 0.

Used by:
	slider_edit_renderer

	orientation
	None
	
Slider Orientation. Either horizontal or vertical.

Used by:
	slider_edit_renderer

	range
	None
	
Slider Range. Either True, 'min' or 'max'.

Used by:
	slider_extractor

	slider_edit_renderer

	show_value
	False
	
Show value in addition to slider.

Used by:
	slider_edit_renderer

	slide
	None
	
Optional Javascript slide callback as string.

Used by:
	slider_edit_renderer

	step
	None
	
Snap slider to increments.

Used by:
	slider_edit_renderer

	unit
	''
	
Slider value unit.

Used by:
	slider_edit_renderer

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	slider_extractor

	
	slider_edit_renderer

	
	slider_display_renderer

	-/-
	-/-

submit

Submit action inside the form

Properties

	name
	default
	description

	action
	True
	
Marks this widget as an action. One out of True or False.

Used by:
	submit_renderer

	class
	None global
	
Common CSS-class to put on.

Used by:
	submit_renderer

	expression
	True
	
Flag or expression callable whether this action is available to the user
or not.

Used by:
	submit_renderer

	handler
	required/ not set
	
Handler is a callable which get called if this action performs. It expects two
parameters: widget, data.

Used by:
	submit_renderer

	label
	required/ not set
	
Label of the submit.

Used by:
	submit_renderer

	next
	required/ not set
	
Next is a callable expected to return the web address. It expects a request as
the only parameter.

Used by:
	submit_renderer

	skip
	False
	
Skips action and only perform next. One out of True or False.

Used by:
	submit_renderer

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	-/-
	
	submit_renderer

	
	empty_display_renderer

	-/-
	-/-

table

<table> compound widget for table creation.

Properties

	name
	default
	description

	class
	None global
	
Common CSS-class to put on.

Used by:
	table_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	table_renderer

	error_class
	None global
	
CSS-class to put on in case of error.

Used by:
	table_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	table_renderer

	id
	required/ not set
	
Value of table id attribute.

Used by:
	table_renderer

	required_class
	None global
	
CSS-class to put on in case if required condition was not met.

Used by:
	table_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	table_renderer

	structural
	False global
	
If a compound is structural, it will be omitted in the dotted-path levels and
will not have an own runtime-data.

Used by:
	compound_extractor

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	compound_extractor

	
	compound_renderer

	table_renderer

	
	compound_renderer

	table_renderer

	-/-
	-/-

tag

Render HTML tags with text. Useful for rendering headings etc.

Properties

	name
	default
	description

	class
	None global
	
Common CSS-class to put on.

Used by:
	tag_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	tag_renderer

	data
	{} global
	
Additional data rendered as HTML5 data attributes on DOM Element.

Used by:
	tag_renderer

	error_class
	None global
	
CSS-class to put on in case of error.

Used by:
	tag_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	tag_renderer

	required_class
	None global
	
CSS-class to put on in case if required condition was not met.

Used by:
	tag_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	tag_renderer

	tag
	required/ not set
	
HTML tag name.

Used by:
	tag_renderer

	text
	required/ not set
	
Tag contents.

Used by:
	tag_renderer

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	-/-
	
	tag_renderer

	
	tag_renderer

	-/-
	-/-

tbody

<tbody> compound widget for table creation.

Properties

	name
	default
	description

	structural
	False global
	
If a compound is structural, it will be omitted in the dotted-path levels and
will not have an own runtime-data.

Used by:
	compound_extractor

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	compound_extractor

	
	compound_renderer

	tbody_renderer

	
	compound_renderer

	tbody_renderer

	-/-
	-/-

td

<td> compound widget for table creation.

Properties

	name
	default
	description

	class
	None global
	
Common CSS-class to put on.

Used by:
	td_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	td_renderer

	colspan
	required/ not set
	
Value of colspan attribute.

Used by:
	td_renderer

	error_class
	None global
	
CSS-class to put on in case of error.

Used by:
	td_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	td_renderer

	id
	required/ not set
	
Value of id attribute.

Used by:
	td_renderer

	required_class
	None global
	
CSS-class to put on in case if required condition was not met.

Used by:
	td_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	td_renderer

	rowspan
	required/ not set
	
Value of rowspan attribute.

Used by:
	td_renderer

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	hybrid_extractor

	
	td_renderer

	
	td_renderer

	-/-
	-/-

text

One line text input blueprint.

Properties

	name
	default
	description

	autocomplete
	None global
	
Switch autocomplete explizit to on or off.

Used by:
	text_edit_renderer

	autofocus
	None global
	
Whether this field gets the focus automatically or not (if browser supports
it).

Used by:
	text_edit_renderer

	class
	'text'
	
Common CSS-class to put on.

Used by:
	text_edit_renderer

	generic_display_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	text_edit_renderer

	data
	{} global
	
Additional data rendered as HTML5 data attributes on DOM Element.

Used by:
	text_edit_renderer

	disabled
	False
	
Flag input field is disabled.

Used by:
	text_edit_renderer

	display_proxy
	False global
	
If ‘True’ and widget mode ‘display’, widget value gets rendered as hidden
input.

Used by:
	display_proxy_renderer

	error_class
	None global
	
CSS-class to put on in case of error.

Used by:
	text_edit_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	text_edit_renderer

	placeholder
	None global
	
Whether this input has a placeholder value or not (if browser supports it).

Used by:
	text_edit_renderer

	required
	False global
	
Whether this value is required or not.

Used by:
	generic_required_extractor

	required_class
	'required'
	
CSS-class to put on in case if required condition was not met.

Used by:
	text_edit_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	text_edit_renderer

	required_message
	u'Mandatory field was empty' global
	
Message to be shown if required condition was not met.

Used by:
	generic_required_extractor

	size
	None global
	
Allowed input size.

Used by:
	text_edit_renderer

	template
	'%s' global
	
Format string with pythons built-in string format template. If a callable
is given it will be used instead and is called with widget and data as
parameters.

Used by:
	generic_display_renderer

	title
	None global
	
Optional help text to be rendered in the title attribute.

Used by:
	text_edit_renderer

	type
	'text'
	
Type of input tag.

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	generic_extractor

	generic_required_extractor

	
	text_edit_renderer

	
	generic_display_renderer

	display_proxy_renderer

	-/-
	-/-

textarea

HTML textarea blueprint.

Properties

	name
	default
	description

	autofocus
	None global
	
Whether this field gets the focus automatically or not (if browser supports
it).

Used by:
	textarea_renderer

	class
	'textarea'
	
Common CSS-class to put on.

Used by:
	textarea_renderer

	generic_display_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	textarea_renderer

	cols
	80
	
Number of characters.

Used by:
	textarea_renderer

	data
	{} global
	
Additional data rendered as HTML5 data attributes on DOM Element.

Used by:
	textarea_renderer

	disabled
	None global
	
Disables input.

Used by:
	textarea_renderer

	display_proxy
	False global
	
If ‘True’ and widget mode ‘display’, widget value gets rendered as hidden
input.

Used by:
	display_proxy_renderer

	error_class
	None global
	
CSS-class to put on in case of error.

Used by:
	textarea_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	textarea_renderer

	placeholder
	None global
	
Whether this input has a placeholder value or not (if browser supports it).

Used by:
	textarea_renderer

	readonly
	None
	
Flag textarea is readonly.

Used by:
	textarea_renderer

	required
	False global
	
Whether this value is required or not.

Used by:
	generic_required_extractor

	textarea_renderer

	required_class
	None global
	
CSS-class to put on in case if required condition was not met.

Used by:
	textarea_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	textarea_renderer

	required_message
	u'Mandatory field was empty' global
	
Message to be shown if required condition was not met.

Used by:
	generic_required_extractor

	rows
	25
	
Number of lines.

Used by:
	textarea_renderer

	template
	'%s' global
	
Format string with pythons built-in string format template. If a callable
is given it will be used instead and is called with widget and data as
parameters.

Used by:
	generic_display_renderer

	title
	None global
	
Optional help text to be rendered in the title attribute.

Used by:
	textarea_renderer

	wrap
	None
	
Either soft, hard, virtual, physical or off.

Used by:
	textarea_renderer

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	generic_extractor

	generic_required_extractor

	
	textarea_renderer

	
	generic_display_renderer

	display_proxy_renderer

	-/-
	-/-

th

<th> compound widget for table creation.

Properties

	name
	default
	description

	class
	None global
	
Common CSS-class to put on.

Used by:
	th_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	th_renderer

	colspan
	required/ not set
	
Value of colspan attribute.

Used by:
	th_renderer

	error_class
	None global
	
CSS-class to put on in case of error.

Used by:
	th_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	th_renderer

	id
	required/ not set
	
Value of id attribute.

Used by:
	th_renderer

	label
	required/ not set
	
Explicit th content. If absent, rendered markup from downstream blueprint(s)
is used.

Used by:
	th_renderer

	required_class
	None global
	
CSS-class to put on in case if required condition was not met.

Used by:
	th_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	th_renderer

	rowspan
	required/ not set
	
Value of rowspan attribute.

Used by:
	th_renderer

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	-/-
	
	th_renderer

	
	th_renderer

	-/-
	-/-

thead

<thead> compound widget for table creation.

Properties

	name
	default
	description

	structural
	False global
	
If a compound is structural, it will be omitted in the dotted-path levels and
will not have an own runtime-data.

Used by:
	compound_extractor

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	compound_extractor

	
	compound_renderer

	thead_renderer

	
	compound_renderer

	thead_renderer

	-/-
	-/-

time

Add-on blueprint yafowil.widget.datetime [http://github.com/bluedynamics/yafowil.widget.datetime/] .

Properties

	name
	default
	description

	class
	'time'
	
Common CSS-class to put on.

Used by:
	time_edit_renderer

	time_display_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	time_edit_renderer

	daytime
	False
	
Flag whether value is day of time. Setting this property or ‘timepicker’
property above to True results in day time range validation.

Used by:
	time_extractor

	disabled
	False
	
Disables input.

Used by:
	time_edit_renderer

	error_class
	None global
	
CSS-class to put on in case of error.

Used by:
	time_edit_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	time_edit_renderer

	format
	'string'
	
Define widget value and extraction format. Either ‘string’, ‘number’ or
‘tuple’.

Used by:
	time_extractor

	time_edit_renderer

	time_display_renderer

	required
	False global
	
Whether this value is required or not.

Used by:
	generic_required_extractor

	required_class
	'required'
	
CSS-class to put on in case if required condition was not met.

Used by:
	time_edit_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	time_edit_renderer

	required_message
	u'Mandatory field was empty' global
	
Message to be shown if required condition was not met.

Used by:
	generic_required_extractor

	timepicker
	False
	
Flag whether time picker is enabled.

Used by:
	time_edit_renderer

	timepicker_class
	'timepicker'
	
jquery.ui timepicker binds to this class.

Used by:
	time_edit_renderer

	unit
	'hours'
	
Only considered if ‘format’ is ‘number’. If unit is ‘hours’ value is float,
otherwise integer.

Used by:
	time_extractor

	time_edit_renderer

	time_display_renderer

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	generic_extractor

	generic_required_extractor

	time_extractor

	
	time_edit_renderer

	
	time_display_renderer

	-/-
	-/-

tr

<tr> compound widget for table creation.

Properties

	name
	default
	description

	class
	None global
	
Common CSS-class to put on.

Used by:
	tr_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	tr_renderer

	error_class
	None global
	
CSS-class to put on in case of error.

Used by:
	tr_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	tr_renderer

	id
	required/ not set
	
Value of id attribute.

Used by:
	tr_renderer

	required_class
	None global
	
CSS-class to put on in case if required condition was not met.

Used by:
	tr_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	tr_renderer

	structural
	False global
	
If a compound is structural, it will be omitted in the dotted-path levels and
will not have an own runtime-data.

Used by:
	compound_extractor

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	compound_extractor

	
	compound_renderer

	tr_renderer

	
	compound_renderer

	tr_renderer

	-/-
	-/-

url

URL aka web address (HTML5) input blueprint.

Properties

	name
	default
	description

	class
	'url'
	
Common CSS-class to put on.

Used by:
	input_generic_renderer

	generic_display_renderer

	class_add
	None global
	
Additional CSS-class to put on.

Used by:
	input_generic_renderer

	display_proxy
	False global
	
If ‘True’ and widget mode ‘display’, widget value gets rendered as hidden
input.

Used by:
	display_proxy_renderer

	error_class
	None global
	
CSS-class to put on in case of error.

Used by:
	input_generic_renderer

	error_class_default
	'error' global
	
Fallback CSS-class to put on in case of error if no specific class was
given.

Used by:
	input_generic_renderer

	required
	False global
	
Whether this value is required or not.

Used by:
	generic_required_extractor

	required_class
	'required'
	
CSS-class to put on in case if required condition was not met.

Used by:
	input_generic_renderer

	required_class_default
	'required' global
	
CSS-class to apply if required condition was not met - if no specific class
was given.

Used by:
	input_generic_renderer

	required_message
	u'Mandatory field was empty' global
	
Message to be shown if required condition was not met.

Used by:
	generic_required_extractor

	template
	'%s' global
	
Format string with pythons built-in string format template. If a callable
is given it will be used instead and is called with widget and data as
parameters.

Used by:
	generic_display_renderer

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	generic_extractor

	generic_required_extractor

	url_extractor

	
	input_generic_renderer

	
	generic_display_renderer

	display_proxy_renderer

	-/-
	-/-

wysihtml5

Add-on blueprint yafowil.widget.wysihtml5 [http://github.com/bluedynamics/yafowil.widget.wysihtml5/] .

Properties

	name
	default
	description

	color
	None
	
Show the color styles toolbar buttons.
Options: bootstrap-wysihtml5.
Values: [True|False|None (use default)].

Used by:
	wysihtml5_textarea_renderer

	cols
	80
	
Number of characters.

	emphasis
	None
	
Show the emphasis toolbar buttons.
Options: bootstrap-wysihtml5.
Values: [True|False|None (use default)].

Used by:
	wysihtml5_textarea_renderer

	font-styles
	None
	
Show the font styles toolbar buttons.
Options: bootstrap-wysihtml5.
Values: [True|False|None (use default)].

Used by:
	wysihtml5_textarea_renderer

	html
	None
	
Show the html toolbar button.
Options: bootstrap-wysihtml5.
Values: [True|False|None (use default)].

Used by:
	wysihtml5_textarea_renderer

	image
	None
	
Show the image toolbar buttons.
Options: bootstrap-wysihtml5.
Values: [True|False|None (use default)].

Used by:
	wysihtml5_textarea_renderer

	justify
	None
	
Show the justify styles toolbar buttons.
Options: bootstrap-wysihtml5.
Values: [True|False|None (use default)].

Used by:
	wysihtml5_textarea_renderer

	link
	None
	
Show the link toolbar button.
Options: bootstrap-wysihtml5.
Values: [True|False|None (use default)].

Used by:
	wysihtml5_textarea_renderer

	lists
	None
	
Show the list toolbar buttons.
Options: bootstrap-wysihtml5.
Values: [True|False|None (use default)].

Used by:
	wysihtml5_textarea_renderer

	readonly
	None
	
Flag for readonly.

	required
	False global
	
Whether this value is required or not.

Used by:
	generic_required_extractor

	required_message
	u'Mandatory field was empty' global
	
Message to be shown if required condition was not met.

Used by:
	generic_required_extractor

	rows
	10
	
Number of lines.

	size
	None
	
Size of toolbar buttons.
Options: bootstrap-wysihtml5.
Values: [‘lg’|’sm’|’sx’|None (default)].

Used by:
	wysihtml5_textarea_renderer

	wrap
	None
	
Either soft, hard, virtual, physical or off.

Chains

	extractors
	edit renderers
	display renderers
	preprocessors
	builders

	
	generic_extractor

	generic_required_extractor

	
	wysihtml5_textarea_renderer

	
	wysihtml5_display_renderer

	-/-
	-/-

 Copyright 2014, Robert Niederreiter, Jens Klein, et al.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	YAFOWIL - Yet Another Form Widget Library

Index

 Copyright 2014, Robert Niederreiter, Jens Klein, et al.
 Created using Sphinx 1.3.1.

 _static/comment-close.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment.png

plans.html

 Navigation

 		
 index

 		YAFOWIL - Yet Another Form Widget Library »

Reference: Macros

The following macros are pre-registered. The table is auto-generated and so it
shows all registrations from the installed packages when the documentation was
generated.

		plan
		blueprints

		
		

 © Copyright 2014, Robert Niederreiter, Jens Klein, et al.
 Created using Sphinx 1.3.1.

search.html

 Navigation

 		
 index

 		YAFOWIL - Yet Another Form Widget Library »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Robert Niederreiter, Jens Klein, et al.
 Created using Sphinx 1.3.1.

_static/ajax-loader.gif

_static/comment-bright.png

_static/yafowil.png
yafowyl

declarative forms

extend.html

 Navigation

 		
 index

 		YAFOWIL - Yet Another Form Widget Library »

Extend YAFOWIL - DYI Widgets

Write Me

 © Copyright 2014, Robert Niederreiter, Jens Klein, et al.
 Created using Sphinx 1.3.1.

_images/yafowil.png
yafowyl

declarative forms

_static/file.png

_static/plus.png

